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Zur allgemeinen Theorie der partiellen Differentialgleichungen
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2
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Reason 1:
Moving frames should be used whenever possible.....Z

Reason 2:

Finding the resolving equations requires finding syzygies among the
invariants. This can be done symbolically (without explicit
formulae for the invariants) using moving frame machinery.

Reason 3:

Moving frames may be used in the reconstruction process. The
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Example (nonlinear wave equation)

The chain rule yields

D, =DyID; +D,JD; =KD,
Dy =DyID; +DyJD;=D;+ (L —J*)D,

Our syzygy becomes

D,K = D,L—3JK = D;K + (L — J*)D;K = KDL — 3JK.
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Ugt + Ulzy — F(ugy) =0 (CNLW)

admits the symmetry pseudogroup
X=z+at) T=t U=u+d(t)
The prolonged infinitesimal generator is

v=a0, +d 0, + (a" —duy)o,
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Example (Calogero nonlinear wave equation)

One can use the consequence for reconstruction:

1 K
D=y  DiDib=-D, (f) 4 %
52 u
Now, take F(s) = 51 SO (CNLW) is  ugs + wtigy — 7” =0.

The resolving equations

L(F'(s) —s) = FLs + Ly.




Example (Calogero nonlinear wave equation)

For simplicity, choose

L(s,t) =

1_1;
5 gt
The corresponding reconstruction equations become
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Example (Calogero nonlinear wave equation)

For simplicity, choose

L(s,t) =

1_1;
5 gt
The corresponding reconstruction equations become
1 1
Db=-—-t

1
DsDtb = 5
A particular solution is



Example (Calogero nonlinear wave equation)
Using these values for b(s,t) and br(s,t) we find the solution to

(CNLW), parameterized by the invariants s, t:

1
(z,t,u) = (logs + stt —ts? —s).

2 4




Comments and Questions

e The entire algorithm may be viewed as extension of Mansfield's
algorithm for integrating invariant ODE.

e A similar process may be used to find invariant, partially
invariant, and differential invariant solutions.

e Reconstruction equations: what is their relation with the
automorphic system?

e Reconstruction equations: what to do with higher order group
parameters which appear at each level?




