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Introduction and motivation

The symmetry group or pseudogroup of a differential equation
maps solutions to solutions. Thus we can partition the solution
space into orbits.

Group foliation is a strategy for finding solutions of differential
equations using this partitioning.

Usual symmetry reduction: orbit of a solution is itself.
Non-invariant solutions: orbits of larger dimension.

Zur allgemeinen Theorie der partiellen Differentialgleichungen
beliebiger Ordnung, Lie 1895

Sur l’intégration des systèmes différentiels qui admettent des
groupes continus de transformations, Vessiot 1904

...

Group analysis of differential equations, Ovsiannikov 1978
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Classical method of group foliation (vaguely)

Given: a PDE and some symmetry group/pseudo-group.

Automorphic system: equations describing an orbit of a solution.

Thinking of invariants as coordinates on a cross-section to the
group action, the automorphic system describes generically the
intersection of the orbit with the cross-section.

Resolving system: equations whose solution determines which orbit.

The resolving equations link the automorphic system with the
original equation. Their solution is the main impediment to finding
exact solutions of the original equation.

Group foliation: split the original equation into

automorphic system and resolving system.
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Geometric idea



Example (a nonlinear heat equation)

The equation

ut = uxx −
u2x
u

(NLH)

admits the scaling symmetry

X = x T = t U = λu.

A generating set of invariants is

x t I =
ux
u

J =
ut
u
.

An automorphic system is the orbit of a generic solution in J 1:

I = φ(x, t) J = ψ(x, t).
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Example (a nonlinear heat equation)

The resolving equation comes from conditions on φ and ψ from
(NLH) and integrability conditions from the automorphic system.

Dx

(
ut
u

)
= Dt

(
ux
u

)
=⇒ ψx = φt.

Dx

(
ux
u

)
=
uxxu− u2x

u2
=
ut
u

(using the equation)

=⇒ φx = ψ

In combination:
φxx = φt

If φ(x, t) is a solution to the heat equation above, then solving
ux
u

= φ(x, t)
ut
u

= φx(x, t)

gives solutions u(x, t) to the original equation.

u(x, t) = Ce
∫
φdx
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Example (stationary boundary layer equations)

Consider the stationary boundary layer equations

uux + vuy + θ = uyy

ux + vy = 0
(SBL)

where θ(x) is a given function.

These equations admit the
symmetry pseudogroup

X = x Y = y + a(x) U = u V = v + a′(x)u.

Generating differential invariants up to first order are

x u I = ux + vy J = uy K = uux + vuy

Our automorphic system takes the form

I = ω(x, u) J = φ(x, u) K = ψ(x, u)
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Example (stationary boundary layer equations)

Resolving equations again come from integrability conditions on
the automorphic system and the constraint of (SBL).

Immediate from (SBL): ω = 0 ψ + θ = φφu

And...from the automorphic system

v =
ψ − uux
uy

=
φφu − (θ + uux)

φ
,

which, when plugged into ux + vy = ω gives

uφx = φ2φuu + θφu (*)

With a solution φ to (*) in hand, we find u(x, y), v(x, y) by solving

ux + vy = 0 uy = φ uux + vuy = φφu − θ.
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Why use moving frames?

Reason 1:
Moving frames should be used whenever possible.... ¨̂

Reason 2:
Finding the resolving equations requires finding syzygies among the
invariants. This can be done symbolically (without explicit
formulae for the invariants) using moving frame machinery.

Reason 3:
Moving frames may be used in the reconstruction process. The
reconstruction process can be viewed as pushing the solution of the
resolving equation off the cross-section, which can be done using a
moving frame parametrized by the independent variables on the
cross-section.
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Review of moving framework

Notation

D the Lie pseudogroup of local diffeomorphisms on M = X × U
D(n) groupoid of n-jets of diffeomorphisms, source map σ, target
map τ

Source coordinates xi, uα i = 1, . . . , p, α = 1, . . . , q

Target coordinates Xi, Uα

Jet coordinates xi, uα, Xi, Uα, Xi
xj
, Xi

uα , U
α
xi
, Uα

uβ
, . . .

G ⊂ D a Lie pseudo-group, G(n) ⊂ D(n) the bundle of n-jets

Infinitesimal generator v = ξi∂xi + φα∂uα

Vector field coordinates satisfy infinitesimal determining equations

L(n)(x, u, ξ(n), φ(n)) = 0
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Review of moving framework

The lift of a differential form or function is

λ(F (xi, uα) = F (Xi, Uα)) λ(ω) = πM (τ∗ω)

The order 0 Maurer-Cartan forms are

µx
i

= dXi −Xi
xjdx

j −Xi
uαdu

α

µu
α

= dUα − Uαxjdx
j − Uαuαduα

and satisfy
λ(ξj) = µx

j
λ(φα) = µu

α

Higher order M–C forms are obtained by Lie differentiation. The
same linear determining equation is satisfied by the M–C forms

L(n)(X,U, µ(n))
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Review of moving framework

A moving frame ρ amounts to choice of normalization of the
pseudogroup parameters based on the choice of a cross-section to
the action of the pseudogroup.

Invariantization creates invariant functions/forms by lifting, then
normalizing the group parameters (pulling back by the moving
frame):

ι(ω) = ρ∗λ(ω)

Invariantization of the horizontal coframe dxj defines the invariant
“horizontal” coframe ι(dxj) = $xj . The invariant differential
operators Dxj are defined as dual to the invariant coframe

dF ≡ DxjF$xj ,

where ≡ denotes projection onto the invariant horizontal space.
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Review of moving framework

The recurrence relations are the key to everything!

dι(ω) = ι(dω + v(∞)ω)

where v(∞) is an arbitrary infinitesimal generator for the
pseudogroup.

For finite dimensional groups the recurrence relation is often
written

dι(ω) = ι(dω) + νκ ∧ ι(v(∞)
κ ω)

where νκ are moving frame pull-backs of a basis of M–C forms
dual to infinitesimal generators vκ.

The recurrence relations may be used, in conjunction with a choice
of cross-section, to compute the structure of the algebra of
differential invariants and moving frame pull-backs of
Maurer-Cartan forms.
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Example (nonlinear heat equation revisited)

Consider again the equation

ut = uxx −
u2x
u

(NLH)

and scaling symmetry X = x T = t U = λu.

Use the cross-section u = 1 to find the moving frame:

λu = 1 =⇒ ρ = 1/u.

Normalized invariants (up to second order)

x t I = ι(ux) =
ux
u

J = ι(ut) =
ut
u

ι(uxx) =
uxx
u

ι(uxt) =
uxt
u

ι(utt) =
utt
u

x, t, I, J generate the algebra of differential invariants.
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Example (nonlinear heat equation revisited)

Using the cross-section and the infinitesimal generator

v(∞) = u∂u + ux∂ux + ut∂ut + uxx∂uxx + uxt∂uxt + utt∂utt + · · ·

we find the moving frame pullback ν = ρ∗(µ):

0 = dι(u) = ι(du) + ν ∧ ι(v(∞)(u)) =⇒ ν ≡ −I$x − J$t.

Recurrence relations yield:

dι(x) = ι(dx) + ν ∧ ι(v(∞)(x)) =⇒ dx = $x

dι(t) = ι(dt) + ν ∧ ι(v(∞)(t)) =⇒ dt = $t

dι(ux) = ι(dux) + ν ∧ ι(v(∞)(ux))

=⇒ dI ≡ [ι(uxx)− I2]$x + [ι(uxt)− IJ ]$t

dι(ut) = ι(dut) + ν ∧ ι(v(∞)(ut))

=⇒ dJ ≡ [ι(uxt)− IJ ]$x + [ι(utt)− J2]$t
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Example (nonlinear heat equation revisited)

Thus (since Dx = Dx and Dt = Dt),

DxI = ι(uxx)− I2 DtI = ι(uxt)− IJ
DxJ = ι(uxt)− IJ DtJ = ι(utt)− J2

The syzygy DtI = DxJ is immediate.

The equation yields the additional “constrained syzygy”

ι

(
ut = uxx −

u2x
u

)
=⇒ J = ι(uxx)− I2

=⇒ J = DxI

We arrive directly at the previous resolving equation

DtI = D2
xI.
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General description of the algorithm so far

Given: nth order PDE ∆ = 0 with symmetry group or
pseudogroup G.

Step 1. Choose p independent invariants J i to act as new
independent variables. Add invariants Kα until the set {J i,Kα} is
a generating set of invariants. The Kα will act as new dependent
variables.

Step 2. Add all syzygies and rewrite invariant differential operators
as derivatives with respect to the new independent variables.

Step 3. Add the “constrained syzygy” from the original equation.

Result: A system of equations in Kα and their derivatives w.r.t.
the J i. These are the resolving equations to be solved.
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Example (nonlinear wave equation)

Consider the equation

uuxy − uxuy = u3 u > 0 (NLW)

admitting the symmetry pseudo-group

X = f(x) Y = y U =
u

f ′(x)
.

The cross-section x = 0, u = 1, ux = 0, uxx = 0, . . . yields
normalized invariants

I = ι(y) = y J = ι(uy) =
uy
y

K = ι(uxy) =
uuxy − uxuy

u3
L = ι(uyy) =

uyy
u

We choose I, J as independent variables for the group foliation.
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Example (nonlinear wave equation)

The universal recurrence relation dι(Ω) = ι(dΩ + v(∞)Ω) with the
prolongation of the infinitesimal generator

v = a(x)∂x − a′(x)u∂u

yields ι(a) = −$x, ι(ax) ≡ J$y, ι(axx) ≡ K$y,

and thus

dI = $y dK ≡ι(uxxy)$x + [ι(uxyy)− 3JK]$y

dJ ≡ K$x + (L− J2)$y dL ≡ ι(uxyy)$x + [ι(uyyy)− LJ ]$y

The following syzygy is immediate

DyK = DxL− 3JK.

Invariantization of (NLW) yields the “constrained syzygy”

K = 1.
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Example (nonlinear wave equation)

The chain rule yields

Dx = DxIDI +DxJDJ = KDJ

Dy = DyIDI +DyJDJ = DI + (L− J2)DJ

Our syzygy becomes

DyK = DxL−3JK =⇒ DIK + (L− J2)DJK = KDJL− 3JK.

The constrained syzyzgy K = 1 yields the resolving equation

DJL = 3J.

The solution is L(I, J) =
3

2
J2 + F (I), F an arbitrary function.
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Reconstruction method

We view the resolving equations as PDE on the cross-section.
The right moving frame maps to the cross-section, the left moving
frame maps away.

Goal: Find ρ̄(J i), parametrized by J i. Once ρ̄ is found it can be
applied to the solution of the resolving equations.

Method: Find a differential equation for ρ̄ and solve it.



Reconstruction method

We view the resolving equations as PDE on the cross-section.
The right moving frame maps to the cross-section, the left moving
frame maps away.

Goal: Find ρ̄(J i), parametrized by J i. Once ρ̄ is found it can be
applied to the solution of the resolving equations.

Method: Find a differential equation for ρ̄ and solve it.



Reconstruction method

For example, for the equation

ut = uxx −
u2x
u

(NLH)

we found the resolving equation DtI = D2
xI.

The right moving frame ρ(x, y) maps the solution to the
cross-section:

ρ(x, y) · (x, y, u, ux, ut) = (x, y, 1, I, J)

and the left moving frame maps back:

ρ̄(x, y) · (x, y, 1, I, J) = (x, y, u, ux, ut).

To reconstruct a solution to (NLH) from a solution to the resolving
equation, we compute ρ̄(x, y) and apply it to a solution of the
resolving equation.
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Reconstruction method

How to compute ρ̄ ?

One method for finite dimensional groups is to embed ρ in GL(n)
and use the trivial identity ρ̄ ρ = Id to derive the relation

dρ̄ = −ρ̄ (dρ ρ−1).

The expression dρ ρ−1 is a matrix of right Maurer–Cartan forms
pulled back by the moving frame, and can be computed using the
recurrence relation.

Doesn’t work for pseudogroups, and requires a representation of ρ.

Take away idea: write the differential of the left moving frame
using the moving frame pull-backs of the right Maurer–Cartan
forms.
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Example (nonlinear heat equation reconstruction)

Recall the equation ut = uxx −
u2x
u

with symmetry

X = x T = t U = λu

Right M–C form (others are zero):

µu = dU − Uxdx− Utdy − Uudu = dU − λdu

Right M–C form pullback (from the recurrence relation)

ρ∗(µu) ≡ −I$x − J$t

The group parameter λ̄ for the left action satisfies

u =
1

λ
U = λ̄U.

Left M–C form may be written

µU = du− uXdX − uTdT − uUdU = du− λ̄dU
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Example (nonlinear heat equation reconstruction)

Notice that

µU = du− λ̄dU = du− 1

λ
dU = − 1

λ

(
dU − λdu

)
and hence the left and right M–C forms are related by

µU = −λ̄µu.

Thus
du− λ̄dU = Udλ̄ = −λ̄µu

Pulling back by the right moving frame yields the equation for λ̄:

dλ̄ ≡ I$x + J$t ≡ Idx+ Jdt (*)

To perform reconstruction, we solve the resolving equations, plug
the solution into (*) and find ρ̄.
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Example (nonlinear heat equation reconstruction)

Resolving equation is
DtI = D2

xI

where I = ι(ux), J = ι(ut). Suppose I(x, t) is a solution. Then

J = DxI,

and the reconstruction equations are

Dxλ̄ = Iλ̄ Dtλ̄ = λ̄DxI.

A solution is λ̄(x, t) = e
∫
I(x,t)dx. Acting by this group element on

the cross-section we obtain

(x, t, 1) 7→ (x, t, e
∫
I(x,t)dx),

that is
u(x, t) = e

∫
I(x,t)dx.
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General strategy for reconstruction

Step 1. Write the order zero left Maurer–Cartan forms in terms of
the right Maurer–Cartan forms.

Step 2. Write the explicit expressions for the left M–C forms in
terms of the jet coordinates and the group parameters.

Step 3. Pull back by the right moving frame. The result will be
the reconstruction equations.

Step 4. Find a solution to the resolving equations, plug it into the
reconstruction equations and solve them.

Step 5. Apply the reconstruction equation solution to the cross
section.
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Example (nonlinear wave equation reconstruction)

Recall the equation uuxy − uxuy = u3 admitting the pseudogroup

X = f(x) Y = y U =
u

f ′(x)
.

Write the parameters for the left action as

x = g(X) y = Y u =
U

g′(X)
.

We compute the left M–C form

µX = dx− xXdX − xY dY − xUdU = dg − gXdX,

which may be rewritten using the right M–C forms:

µX = −gXµx
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Example (nonlinear wave equation reconstruction)

Thus,
−gXµx = dg − gXdX

Pull back by the right moving frame

gX$
x ≡ dg.

Here we’ve used ρ∗X = 0 and ρ∗µx ≡ −$x.

Rewrite using the coframe defined by the invariants:

dg ≡ gX
(
J2 − L
K

dI + dJ

)
.

Hence

DIg = gX

(
J2 − L
K

)
DJg = gX .

Together,

DIg = DJg

(
J2 − L
K

)
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Example (nonlinear wave equation reconstruction)

Using the solution to the resolving equations

K = 1 L(I, J) =
3

2
J2 + F (I)

the reconstruction equations become

∂g

∂I
= − ∂g

∂J

(
1

2
J2 + F (I)

)
.

If g(I, J) is a solution to these equations, we then act on the
cross-section to obtain a solution parametrized by I and J :

(x, t, u) =

(
g, I,

1
∂g
∂J

)
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Example (Calogero nonlinear wave equation)

uxt + uuxx − F (ux) = 0 (CNLW)

admits the symmetry pseudogroup

X = x+ a(t) T = t U = u+ a′(t)

The prolonged infinitesimal generator is

v = a∂x + a′∂u + (a′′ − a′ux)∂ut

+ (−a′uxx)∂uxt + (a′′′ − a′′ux − 2a′uxt)∂utt + · · ·

We choose the cross-section

x = 0 u = 0 ut = 0 utt = 0 · · ·
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Example (Calogero nonlinear wave equation)

Recurrence relation computations yield the normalizations

ι(a) = −$x ι(at) = −I10$x ι(att) = −(I11 + I210)$
x

where ι(ux) = I10, ι(uxt) = I11, etc.

The structure of the
differential algebra is revealed

dI10 ≡ I20$x + I11$
t dI20 = I30$

x + I21$
t

dI11 =
(
I21 + I20I10

)
$x + I12$

t

New independent variables t s = I10
New dependent variables K = I11 L = I20
Explicitly,

Dxs = L Dts = K

DxK = I21 + sL DtK = I12

DxL = I30 DtL = I21
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Example (Calogero nonlinear wave equation)

The invariant differential operators may be written

Dx = LDs Dt = Dt +KDs

corresponding to the dual relationship

$x ≡ 1

L
ds− K

L
dt $t ≡ dt.

The syzygies may be rewritten

Dts = K

LDsK = I21 + sL DtK +KDsK = I12

LDsL = I30 DtL+KDsL = I21

Comparing the I21 terms gives immediately:

L(Ks − s) = KLs + Lt
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Example (Calogero nonlinear wave equation)

Invariantization of (CNLW) gives the constrained syzygy

K = F (s)

Thus we find the resolving equations

L(F ′(s)− s) = FLs + Lt.

This must be solved (given a particular F ).

We’ll do this in a minute. First, we derive the the reconstruction
equations.
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Example (Calogero nonlinear wave equation)

Reconstruction. Find the left Maurer–Cartan forms:

µX = dx− dX − bTdT = db− bTdT
µT = 0

µU = du− dU − bTTdT = dbT − bTTdT

where b, bT , bTT are the pseudogroup parameters for the left
action.

Use the relationship between the left and right M–C forms:µXµT
µU

 = −

1 bT 0
0 1 0
0 bTT 1

µxµt
µu


So,

−µx = db− bTdT
−µu = dbT − bTTdT



Example (Calogero nonlinear wave equation)

Reconstruction. Find the left Maurer–Cartan forms:

µX = dx− dX − bTdT = db− bTdT
µT = 0

µU = du− dU − bTTdT = dbT − bTTdT

where b, bT , bTT are the pseudogroup parameters for the left
action. Use the relationship between the left and right M–C forms:µXµT

µU

 = −

1 bT 0
0 1 0
0 bTT 1

µxµt
µu


So,

−µx = db− bTdT
−µu = dbT − bTTdT



Example (Calogero nonlinear wave equation)

Recall that we have found already the right moving frame
pull-backs of the Maurer–Cartan forms:

ι(a) = ρ∗µx = −$x ≡ − 1

L
ds+

K

L
dt

ι(at) = ρ∗µu = −s$x ≡ − s
L
ds+

sK

L
dt

To determine equations for the left moving frame parameters, pull
back by the right moving frame:

−µx = db− bTdT =⇒ db ≡ 1

L
ds+

(
bT −

K

L

)
dt

−µu = dbT − bTTdT =⇒ dbT ≡
s

L
ds+

(
bTT −

sK

L

)
dt

So the reconstruction equations (to second order) are

Dsb =
1

L
Dtb = bT −

K

L
DsbT =

s

L
DtbT = bTT −

sK

L
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Example (Calogero nonlinear wave equation)

One can use the consequence for reconstruction:

Dsb =
1

L
DsDtb = −Ds

(
K

L

)
+
s

L
.

Now, take F (s) =
s2

2
, so (CNLW) is uxt + uuxx −

u2x
2

= 0.

The resolving equations

L(F ′(s)− s) = FLs + Lt.

simplify to
s2

2
Ls + Lt = 0.

Solving by method of characteristics gives

L(s, t) = H

(
s

1− 1
2st

)
where H is an arbitrary function.
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Example (Calogero nonlinear wave equation)

For simplicity, choose

L(s, t) =
1

1
s −

1
2 t
.

The corresponding reconstruction equations become

Dsb =
1

s
− 1

2
t DsDtb =

1

2

A particular solution is

b(s, t) = log s+
1

2
st.

Using

Dtb = bT −
K

L
we find

bT (s, t) =
1

4
ts2 − s
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Example (Calogero nonlinear wave equation)

Using these values for b(s, t) and bT (s, t) we find the solution to
(CNLW), parameterized by the invariants s, t:

(x, t, u) = (log s+
1

2
st, t,

1

4
ts2 − s).



Comments and Questions

• The entire algorithm may be viewed as extension of Mansfield’s
algorithm for integrating invariant ODE.

• A similar process may be used to find invariant, partially
invariant, and differential invariant solutions.

• Reconstruction equations: what is their relation with the
automorphic system?

• Reconstruction equations: what to do with higher order group
parameters which appear at each level?

• Similarity with EDS algorithm of Anderson, Fels, Pohjanpelto.

• Application of symmetry techniques for solving resolving
equations?


