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We will discuss the study of Killing tensors (notably Killing two-

tensors) defined in spaces of constant curvature via the method

of moving frames.
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Killing tensors

W. Killing (1892)

Let (M, g) be a pseudo-Riemannian manifold.

Dfn 1. A Killing tensor field K of valence p ≥ 1 defined
in (M, g) is a symmetric (p,0) tensor field satisfying the
Killing tensor equation

(1) [K, g] = 0,

where [ , ] denotes the Schouten bracket. When p =
1, K is said to be a Killing vector field (infinitesimal
isometry) and (1) reduces to

(2) LKg = 0,

where L denotes the Lie derivative operator.



Kp(M) denotes the vector space of Killing tensors of

valence p defined on M. Its dimension derived indepen-

dently (by Delong, Takeuchi, Thompson, and others)

is given by

d = dimKp(M) ≤
1

n

(n+ p

p+ 1

)(n+ p− 1

p

)
,

with equality iff M is of constant curvature.



Fore example, let g be the Minkowski metric

gij = diag(−1,1,1),

defined with respect to canonical pseudo-Cartesian co-

ordinates xi = (t, x, y).

In this coordinates the the vector space of Killing vec-

tors is spanned by

(3) Xi =
∂

∂xi
, Ri = εkjix

jXk.

The general Killing tensor in K2(M3) may be expressed

as

(4) K = AijXi �Xj + 2BijXi �Rj + CijRi �Rj,



where Aij, Bij and Cij, the Killing tensor parameters,

are constants and satisfy the symmetry properties Aij =

A(ij) and Cij = C(ij). On account of the syzygy gijXi�
Rj = 0, only twenty of the twenty-one Killing tensor

parameters are independent.

Of course, (4) is not the only available representation

for K2(M3). Alternatively, this vector space can be rep-

resented in terms of the components of an appropriate

algebraic curvature tensor, which arises in this context

quite naturally when one studies Killing two-tensors de-

fined on spaces of constant non-zero curvature. For

example, let M = Sn. Then,

(5) K2(Sn) = Cijk`Rij �Rk`,



where Rij = 2δk`ij g`mx
mXk, Xi = ∂

∂xi
,

and xi, i = 1, . . . , n+ 1 are Cartesian coordinates of the

corresponding ambient space En+1.

The vector spaces of Killing tensors of valence two

K2(M) are of particular importance because (some of

their) elements play a pivotal role in the Hamilton-

Jacobi theory of orthogonal separation of variables.



Hamilton-Jacobi theory of orthogonal separation
of variables

Given a Hamiltonian system defined by a natural Hamil-
tonian of the form

(6) H(q,p) = 1
2g
ij(q)pipj + V (q).

We wish to know

(i) How many “inequivalent” coordinate systems af-
ford orthogonal separation of variables in the corre-
sponding Hamilton-Jacobi (HJ) equation

(7) H(q,p) = E, pi =
∂W

∂qi
, i = 1, . . . , n?



(ii) If the answer to (i) is non-zero, how can one char-

acterize intrinsically the coordinate systems that af-

ford separation of variables in the HJ equation?

(iii) What are the canonical coordinate transformations

(q1, q2, . . . , qn)→ (u1, u2, . . . , un)

from the given position coordinates of (6) to the

coordinate systems that afford orthogonal separa-

tion of variables of the HJ equation?



A natural connection with the Hamiltonian mechanics:

a function F ∈ T ∗(M) which is quadratic in the mo-

menta according to

(8) F (q,p) = Kij(q)pipj

is a first integral of (6) iff the functions Kij above are

the components of a Killing tensor field K ∈ K2(M).



Consider, for example, the Morosi-Tondo (MT) inte-
grable system∗

(9) H = 1
2(2pupv + py

2)− 5
8u

4 + 5
2u

2v + 1
2uy

2 − 1
2v

2,

which is obtained as a stationary reduction of the seventh-
order KdV flow. The Hamiltonian (9) is defined on
the base manifold M3 with respect to the position-
momenta coordinates qi = (u, v, y) and pi = (pu, pv, py),
or in the pseudo-Cartesian coordinates t and x, gij =
diag(−1,1,1) by

u = − 1√
2

(t+ x), v = 1√
2

(t− x),

Then, the potential in (9) assumes the form

(10) V = − 5
32

(t+x)4 + 5
√

2
8

(t+x)2(t−x)−
√

2
4

(t+x)y2− 1
4
(t−x)2.

∗C. Morosi and G. Tondo, “Quasi-bi-Hamiltonian systems and sep-
arability”, J. Phys. A: Math. Gen. 30, 2799-2806 (1997).



Thm 2 (Eisenhart). The Hamiltonian system (6) de-

fined by the geodesic Hamiltonian (V = 0) is orthog-

onally separable iff it admits n − 1 functionally inde-

pendent first integrals of motion of the form (8), such

that (i) all of the corresponding Killing tensors of va-

lence two have real and pointwise simple (almost ev-

erywhere) eigenvalues, (ii) the eigenvectors (or eigen-

forms) of these Killing two-tensors are normal and (iii)

the Killing two-tensors defined by the n−1 first integrals

have the same eigenvectors (eigenforms).



Let K1, . . . ,Kn−1 be the Killing two-tensors of Theo-

rem 2. Then {g, K1, . . . ,Kn−1} generates an n-dimensional

vector subspace of K2(M). The generic Killing tensor

(11) K = g +
n−1∑
i=1

Ki

has pointwise distinct eigenvalues and the same eigen-

vectors as any of the Ki, i = 1, . . . , n−1. The normality

of the eigenvectors of each of the n− 1 Killing tensors

means that the eigenvectors generate n foliations that

consist of (n−1)-dimensional hypersurfaces orthogonal

to the eigenvectors of the Killing tensor. Such a geo-

metric construction is called an (orthogonal) separable

web which defines the coordinates of separation for the

HJ equation (7).



The case of V 6= 0 in (6) is the subject of a more

general theorem.

Thm 3 (Benenti). The natural Hamiltonian system de-

fined by (6) is orthogonally separable iff there exists a

valence-two Killing tensor K with (i) pointwise simple

and real eigenvalues, (ii) normal eigenvectors (eigen-

forms) and (iii) such that

(12) d(K̂ dV ) = 0,

where the (1,1)-tensor K̂ = Kg−1.

A Killing tensor satisfying conditions (i) and (ii) of The-

orem 2 or 3 is called a characteristic Killing tensor

(CKT).



Therefore given a Killing two-tensor K ∈ K2(M), we

wish to

1) verify whether or not it is a characteristic Killing

tensor;

2) if it is, - then to determine what type of an orthog-

onal coordinate web it generates.

Or, in other words, we wish to classify the characteris-

tic Killing tensors of K2(M) modulo the action of the

(orientation-preserving) isometry group G of M, which

leads to



1. Canonical forms problem: Consider the action
G � K2(M). The problem is to determine the
number of inequivalent orbits corresponding to the
CKTs defined on (M, g) as well as the canonical
forms representing each of them.

2. Equivalence problem: Consider again the action
G � K2(M) (or G � K2(M)×M). Let K ∈ K2(M).
First, the problem is to determine whether or not
K is a CKT. If the answer is “yes”, the main prob-
lem is to determine the corresponding orbit in the
quotient space K2(M)/G (or (K2(M)×M)/G) that
the Killing two-tensor in question K belongs to. Fi-
nally, we also want to determine the moving frames
map that maps K to its respective canonical form.



Let K ∈ K2(M) have real and distinct eigenvalues. To
check whether its eigenvalues (eigenforms) are normal,
one cannot use the vanishing of the Nijenhuis tensor:

(13) N i
jk = Ki

`K
`
[j,k] +K`

[jK
i
k],` = 0.

Instead, one can use the Tonolo-Schouten-Nijenhuis
conditions:

N`
[jkgi]` = 0,

N`
[jkKi]` = 0,

N`
[jkKi]mK

m
` = 0,

(14)



or the Haantjes condition:

(15) Hi
jk = N i

`mK
`
jK

m
k + 2N`

m[jK
m
k]K

i
`+

N`
jkK

m
`K

k
m = 0.

Substituting the Killing tensor representation (5) into



the condition (15) one gets

4C`(pq
kCmrs|iCj|tu

nC`v)mn +

2C`(p|m|
kCnqr[iCj]st

mC`uv)n −

5C`(pq
kCmrs[iCj]|m|t

nC`uv)n +

C`(pq
kCmrs[iCj]

`
t
nC|n|uv)m +

C`(pq
kCmrs[iCj]tu

nC|n|v)m
` −

3C`(pq
kCmr|ij|C

n
st|m|C

`
uv)n −

2C`(pq
kCmrs[iCj]t|m|

nC`uv)n = 0.(16)



Substituting the Killing tensor (5) into the Tonolo-
Schouten-Nijenhuis condition (14), we get

(17) C`
(pq[iCjk]r)` = 0,

C`(pq
mC`

r[ijCk]st)m −
2C`(pq[iCj

`
|r|
mCk]st)m = 0,(18)

3C`(pq
mC`

r|n|sC
n
t[ijCk]uv)m +

2C`(pq
mC|n|rs[iCj|t|

n`Ck]uv)m +

2C`(pq
mC|n|rs[iCj

n
|t|
`Ck]uv)m = 0,(19)

where | . . . | denotes exclusion of the enclosed indices from the

symmetrization process.

Thm 4. †[CSCMS] (17) + (18) ⇒ (19).

†Cochran (née Adlam) C. M., McLenaghan R. G., and Smirnov R.
G., Equivalence problem for the orthogonal webs on the 3-sphere,
JMP, 2011 (to appear)



Moving frames

In a fixed (quasi-)orthonormal frame of eigenvectors

{e1, . . . , en} the corresponding Cartan structure equa-

tions read

dea + ωab ∧ eb = T a,(20)

dωab + ωac ∧ ωcb = Θa
b,(21)

together with the Killing tensor equations for the com-

ponents Kab of K,

K(ab;c) = 0,

and the integrability conditions

ea ∧ dea = 0 (no sum).



In these equations, ωab = Γcb
a ec are the connection

one-forms, T a = 1
2T

a
bc e

b∧ec are the torsion two-forms,
Θa

b = 1
2R

a
bcd e

c∧ed are the curvature two-forms, {e1, . . . , en}
is the dual basis of one-forms, the connection coeffi-
cients Γcb

a correspond to the Levi-Civita connection ∇
(and hence T a = 0 in (20)) and Rabcd are the compo-
nents of the curvature tensor. We also note that, with
respect to this frame, the components of the metric g
and CKT K are given by

gab = diag(ε1, . . . , εn),Kab = diag(ε1λ1, . . . , εnλn),

respectively, where εa = ±1, a = 1, . . . , n, and λa, a =
1, . . . , n, are the eigenvalues of K.

ea = fadu
a, ea =

1

fa

∂

∂ua
.



Eisenhart (1934) solved the canonical forms problem

for K2(E3), by reducing the Killing tensor equation to

∂λa

∂ua
= 0,

∂λa

∂ub
= (λa − λb)

∂ ln f2
a

∂ub

and deriving from the above equations integrability con-

ditions upon demanding that the eigenvalues λa be dis-

tinct and that their mixed second-order partial deriva-

tives commute, thus proving that there were exactly 11

orbits corresponding to characteristic Killing tensors of

the space K2(E3).



Or, more geometrically, the problems can be described

as follows:

(22) G
π1 //G/H 'M

(K2(M)×M)/G

f
OO

K2(M)×Mπ3
oo

π2
OO



Solving the canonical forms problem, one gets a set of

webs, along with the corresponding metrics and coor-

dinate systems. Here is the spherical case for K2(S3):


ds2 = dt2 + sin2 t(du2 + sin2 udv2)
x = sin t sinu cos v, y = sin t sinu sin v,
z = sin t cosu, w = cos t
0 6 t 6 π, 0 6 u 6 π, 0 6 v < 2π

K = c1R12 �R12 + c2(R13 �R13 +R23 �R23)

Rij = diag(c1 + c2, c1 + c2, 2c2,0) (the corresponding

canonical Ricci tensor)



Because the isometry group acts transitively in the bun-

dle of frames one can consider instead the actual group

action and the algebraic moving frames method (Fels

Olver 1997-98). For example,

The action of SE(2,1) � K2(M3)×M3 is given by

(23) xi = Λijx̃
j + δi,

where Λij ∈ SO(2,1), δi ∈ R3, and

Ãij = Λk
iΛ`

jAk` + 2Λk
(iµ`

j)Bk` + µk
iµ`

jCk`,

B̃ij = Λk
iΛ`

jBk` + µk
iΛ`

jCk`,

C̃ij = Λk
iΛ`

jCk`.

(24)



where

(25) µi
j = εk`iΛk

jδ`.

To generate SE(2,1)-covariants of K2(M3), we define

Kij = Aij + 2ε(i`kB
j)kx` + εimkε

j
n`C

k`xmxn,(26)

Lij = Bij + εi`kC
jkx`,(27)



Some of the requisite covariants:

C1 = Tr(C), C2 = Tr(C2), C3 = Tr(C3),

C4 = Tr(L2), C5 = Tr(LLt), C6 = Tr(LCLt),

C7 = Tr(LC2L), C8 = Tr(KC), C9 = Tr(KCKC),

C10 = Tr(KLKLt), C11 = Tr(KL2), C12 = Tr(K2L2).

(28)



Solving the equivalence problem

To separate the orbits, we use invariants, covariants,

isotropy subgroups.

dimG = dimOx + dimGx

Computing the corresponding moving frames map can

be hard. If it cannot be found directly from the charac-

teristic Killing tensor K in question, use the infinites-

imal generators of the isotropy subgroup (map them

into their respective canonical forms instead), the cor-

responding Ricci tensor derived from the algebraic cur-

vature tensor, its eigenvalues.



The K2(H3) case

Caroline Cochran (née Adlam), ”The equivalence prob-

lem for orthogonally separable webs on spaces of con-

stant curvature”, Dalhousie University, 2011.

K2(H3) K2(S3)
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Solution

Impose the compatibility condition d(K̂dV ) = 0 on the

potential V (10), solve the system of PDEs:

(29) Kij = a1K
ij
1 + a2K

ij
2 + a3K

ij
3 ,

where a1, a2 and a3 are arbitrary constants and

Kij
1 =

 1 + 2
√

2x 1 +
√

2(t− x) −
√

2 y

1 +
√

2(t− x) 1− 2
√

2 t
√

2 y

−
√

2 y
√

2 y −2
√

2(t+ x)

 ,

Kij
2 =

 −2− 2
√

2x −1−
√

2(t− x)
√

2 y

−1−
√

2(t− x) 2
√

2 t −
√

2 y√
2 y −

√
2 y 1 + 2

√
2(t+ x)

 ,



Kij
3 =

 −y2 y2 −y(t+ x+
√

2)

y2 −y2 y(t+ x−
√

2)

−y(t+ x+
√

2) y(t+ x−
√

2) −(t+ x)2 − 2
√

2(t− x)

 .

The TSN conditions (14) are identically satisfied for
the Killing tensor (29) and hence it has normal eigen-
vectors for all a1, a2 and a3. The discriminant of the
characteristic polynomial of (29) is a lengthy polyno-
mial in the constants ai and the pseudo-Cartesian co-
ordinates, nevertheless it is generally non-zero and van-
ishes only if a1 = a2 and a3 = 0, in which case (29)
reduces to a multiple of the metric. Therefore, we con-
clude that (29) generally has normal eigenvectors and
real and distinct eigenvalues, thereby defining a char-
acteristic Killing tensor (CKT).

The CKT (29) admits no web symmetry for any val-
ues of the constants ai. The search for a dilatational



web symmetry proves equally unsuccessful. Therefore,

the CKT (29) characterizes one of the ten asymmetric

separable webs in M3.

We now proceed to classify the asymmetric Killing ten-

sor (29). It follows that A1 = 0, C2 = 0 and

A2 = 4
√

2 a3
2(t+ x).

There are two cases to consider, namely a3 = 0 and

a3 6= 0. Firstly, if a3 = 0, then A4 = 0 and A11 =

−8(a1 − a2)3 6= 0 (otherwise the CKT would reduce

to the metric). Therefore, the CKT (29) with a3 = 0

characterizes the asymmetric web II. Secondly, if a3 6=
0, then A4 = 0 and A6 = −8a3

3, thus in this case the

CKT also characterizes the asymmetric web II.



We now compute the moving frame map for (29) which

transforms it to the corresponding canonical form.

(30) Λij =
1

2
√

2

−3 −1 0
1 3 0
0 0 −2

√
2

 , δi = 0,

defines the moving frame map. Similarly, for the case

a3 6= 0, we find that the moving frame map for this

case is also given by (30).



The transformation from canonical pseudo-Cartesian
coordinates (t, x, y) to separable coordinates (µ, ν, ω) is
given by

t+ x = 1
8

(
ω2 + (µ+ ν)2

)(
ω2 + (µ− ν)2

)
,

t− x = µ2 + ν2 − ω2,

y = µνω.

(31)

The transformation to the separable coordinates is
given by

u = − 1√
2
(t+ x) = 1

2
(µ2 + ν2 − ω2),

v = 1√
2
(t− x) = −1

8

(
ω2 + (µ+ ν)2

)(
ω2 + (µ− ν)2

)
,

y = −µνω.

(32)



Separation of variables on 3D-spaces of constant

curvature

1. K2(E3) - 11 orthogonal webs

Canonical forms problem

(a) Eisenhart, L. P., “Separable systems of Stäckel,” Ann.
Math. 35, 284–305 (1934).

Equivalence problem

(a) Horwood, J. T., McLenaghan, R. G., and Smirnov, R. G.,
“Invariant classification of orthogonally separable Hamilto-
nian systems in Euclidean space,” Commun. Math. Phys.
259, 679–709 (2005).

(b) Horwood, J. T., “On the theory of algebraic invariants
of vector spaces of Killing tensors,” J. Geom. Phys. 58,
487–501 (2008).



2. K2(M3) - 39 orthogonal webs (59 coordinate systems)

Canonical forms problem

(a) Horwood, J. T., and McLenaghan, R. G., “Orthogonal
separation of variables for the Hamilton-Jacobi and wave
equations in three-dimensional Minkowski space,” J. Math.
Phys. 49, 023501 (48 pages) (2008).

Equivalence problem

(a) Horwood, J. T., McLenaghan, R. G., and Smirnov, R. G.,
Hamilton-Jacobi theory in three-dimensional Minkowski space
via Cartan geometry, J. Math. Phys. 50, 053507 (2009)
(41 pages).



3. K2(S3) - 5 orthogonal webs (6 coordinate systems)

Canonical forms problem

(a) Eisenhart, L. P., “Separable systems of Stäckel,” Ann.
Math. 35, 284–305 (1934).

(b) Olevsky, M. N, “Three orthogonal systems in spaces of
constant curvature in which the equation ∆2u + λu = 0
admits a complete separation of variables,” Math. Sbornik
27, 379–426 (1950).

Equivalence problem

(a) Cochran (née Adlam) C. M., McLenaghan R. G., and
Smirnov R. G., Equivalence problem for the orthogonal
webs on the 3-sphere, JMP, 2011 (to appear).



4. K2(H3) - 29 orthogonal webs (34 coordinate systems)

Canonical forms problem

(a) Olevsky, M. N., “Three orthogonal systems in spaces of
constant curvature in which the equation ∆2u + λu = 0
admits a complete separation of variables,” Math. Sbornik
27, 379–426 (1950).

(b) Grosche, C., Pogosyan, G. S., Sissikian, A. N., “Path inte-
gral approach to superintegrable potentials on the three-
dimensional hyperboloid,” Phys. Past. Nuclei, 28 486–
519 (1999).

Equivalence problem

(a) Cochran (née Adlam) C. M., ”The equivalence problem for
orthogonally separable webs on spaces of constant curva-
ture”, Dalhousie University, 2011.
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