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Example. Integrable systems.

Potential Kadomtsev-Petviashvili (PKP) equation

1 3,
Uty + “Ug Uy + —Urxrx + —S

5 1 1 Uyy = 0.

Admits an infinite dimensional algebra of distinguished
symmetries gpx p involving 5 arbitrary functions of time
t. (David, Kamran, Levi, Winternitz, Symmetry reduction for the
Kadomtsev-Petviashvili equation using a loop algebra, J. Math.

Phys. 27 (1986), 1225-1237.)
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The symmetry algebra gpxp is spanned by the vector
fields

Xy = f% + %yf’g—y + (%xf’ - gs2y2f~) g_x n (_%uf, n émzf//
o= g_y N gszyg/% + (—gs%yg” + 8%y:”g”’) %,

Zp = h% + (;:Uh’ _ 382y2h”) %7

Wk:yk%, and U :l%,

where f = f(t), g = g(t), h = h(t), k = k(t) and [ = I(t)
are arbitrary smooth functions of .



Locally variational with the Lagrangian

1 1 3
L:—iutum—zui—i——u —gsu.

But admits no Lagrangian for the PKP equation invariant
under OPK p!

To what extent do these properties characterize the PKP
equation?



Modified KdV (MKdV) equation
V¢ — Ugpga — ’UQUx = 0.

Write v = u, to get the variationally closed equation

Uty — Uggpzax — uiuma: =0 (*)

with the Lagrangian

1 1 1
L = — 5 Utlla + iuim — Eui

Equation (x) admits an infinite dimensional algebra gns i qy
of distinguished symmetries with the generators

L Y
o0 T o © ot 30z 7T Vo

where f(t) is an arbitrary function of time.

But admits no Lagrangian for () invariant under gpsxqy!



Davey-Stewartson (DS) equations

— U + a(Ugg + Uyy) — bu(u? + v?) — cuw, = 0,
Us + a(Vag + Vyy) — bv(u® +v?) — cvw, = 0,

Wyg — Wyy + c(uu, +vvy,) = 0.

Admits an infinite dimensional algebra of distinguished
symmetries gpg involving 6 arbitrary functions of time
t. (Omote, M., Infinite dimensional symmetry algebras and an
infinite number of conserved quantities of the (2+1)-dimensional
Davey-Stewartson equation, J. Math. Phys. 29 (1988), 2599
2603.)

The Lagrangian

b
L:vut—g( i+u§—|—v§—|—v§)—z(u2—l—v2)2—

c
§(u2 +v%)w, — w2 + ws

is not invariant under gpg.



Example. Gauss-Bonnet Theorem.

Even dimensional compact orientable Riemannian mani-
fold (M?™, g) with curvature form (.

FEuler form Pf(Q);

Fuler characteristic X (M).

Gauss-Bonnet: [, Pf(Q2) = (2m)" X (M).

The Euler form is invariant under orientation preserving
diffeomorphisms and its Euler-Lagrange expression van-

ishes.

How does one identify other analogous objects on Rie-
mannian manifolds?



Example. Foliations.

Codimension ¢ transversally orientable integrable distri-
bution A on M.

Frobenius: There is w € 27 so that
Xel'A) if Xow=0.

Integrability of A <& dw=nAw.

Godbillon-Vey form: v =n A (dn)?.

The Godbillon-Vey class is the cohomology class of [y]| €
H2q—|—1 (M) )

Proper framework, generalizations, extensions?



(GOAL IS TO REDUCE THESE TYPE OF
QUESTIONS TO ALGEBRAIC PROBLEMS




DIFFEOMORPHISM PSEUDOGROUP

M™ m dimensional manifold
D=D(M) pseudogroup of local diffeomorphisms of M
DrC JV(M, M) bundle of nth order jets, 0 < n < o

Coordinates on D":

gt =ile= (222,27,

c1”) ci1C2° “)7
where 2%, Z% are local coordinates of M about the source
and the target, and Z 21, Zb . ... stand for the derivative

c1C2?
variables.
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PSEUDOGROUPS

G C D is a pseudogroup if

1. id € G;
2. v, €G = po1 € G where defined;
3. peG = o ted.

G is a Lie (or continuous) pseudogroup if, in addition, for
alln > N,

4. G™ C D" is a subbundle;
5. p e G <= jlp e g
6. GNTF =prk GV, k> 1.

INFINITESIMAL GENERATORS

A local vector field v € X(M) is a G vector field, v € g, if
the flow @} € G for all fixed ¢ on some interval about 0.

Let G™ be determined locally by F,(z, Z(") = 0. Then a
G vector field v satisfies

Fo(z, V™) =0 = La(zj"v)=0.

These are the infinitesimal determining equations for G.
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MAURER—CARTAN FORMS FOR D°°:

D acts on D" from both left and right by
Lyjie = ji (¥ o),
RyjZe = jZ—l(z) (o).

Horizontal forms: dz®

Basic Contact forms: 921 e

_ a _ m rza Cpt1
p chl-'-cp Zz ch dZ Pt

”'Cpcp—Fl

Maurer-Cartan forms are represented by invariant contact
forms on D°.
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CONSTRUCTION OF RIGHT INVARIANT FORMS on D°:

The target coordinate Z° invariant under Ry —

W =dp2b =Y, Zbdz*,
ub = dy 2b = dzb — zbdz,

are also invariant under R,.
OPERATORS OF INVARIANT DIFFERENTIATION:

Dzo = W'D,,, where

0 0

Do = 4> o0 25 pmme— and W= (Z71H)g.
azb p>0 “d dpbazdl-.-dp b

Right invariant coframe on D>°:

w, My, = LDy - Lo, 1% p2=0.
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STRUCTURE EQUATIONS:

Taylor series method: Let

a 1 a
12 [[HH — Z ﬁuJﬂja

| J|>0
where J = (j1,72,.--,Jk), 1 < 7i < m, is a multi-index of
length |J| = k.
Write

U[[H]]:(Nl[[H]]v"'aﬂm[[H]])Ta w:(wlv"‘awm)T'

Then dulH] = VuplH] A (u[H] - dZ),
dw = —w A Vgul0].

INVARIANT COFRAME FOR G*°: Simply pull back w’, u%
to G°°.

RELATIONS: On G*°, the Maurer-Cartan forms p9 satisfy
the right-invariant infinitesimal determining equations

La(Z, ) = 0. (1)

Structure equations for G* « structure equations for D
modulo relations (1).
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Moving frames. Let m: E — M be a fibered manifold
and write J"(F), 0 < n < oo, for the nth order jet bundle
of local sections of £ — M.

Locally J"(E) ~ { (2", u®,u$ ,u$, ..., u )}

1112 1192 %p

The action of D on FE lifts to J" through its action on
sections, and this action factors into an action of D™ (and
G",g,... )on J" This process is called prolongation.

A local moving frame of order n is a G-equivariant map-
ping
p YV — g, Verer . Jn,

preserving base points.
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EXISTENCE OF MOVING FRAMES.

Isotropy subgroup at z":

0 ={g" G |g" " =2"}.

G acts freely at z" if 0, = {id?} and locally freely at z"
it Z7. is a discrete subgroup of G7'.

Theorem. A local moving frame of order n exists in a
neighborhood of z™ € J" if and only if G acts locally freely
at 2™ .

Theorem. If G" acts (locally) freely at 2™ € J", then G!
acts (locally) freely at any z' € J' with ! (') = 2, for
[ >n.

Theorem. Suppose G" admits a moving frame on V C
J". Then G"t admits a moving frame on V1) = (771 =1 (V).

— The projective limit of a compatible sequence of
moving frames is well defined on J°.
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CONSTRUCTION: Choose a cross-section IC for the action
of G on J". Define p™(2") by the condition p™(z")- 2™ €
IC.
OPPOSITE VIEW: Let
i =1(g"2") 2" € K, g", 2" based at the same point},
and let

T He = " T(g" ") = g7 2

Then, if the action is locally free, 7™ will be an equivariant
local diffeomorphism with the action of G on ’Hﬁc given by

- (g™, 2") = (¢ g™, 2").
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Invariantization. Let H" be the pull-back of G" — M
under 77 : J™ — M; hence g € H" is the pair

g" = (2",9"),

where both 2" € J", ¢" € G™ are based at the same point
ze M.

Source and target maps

G acts on ‘H" from the left by
Lyg" = (j?¢-2”,g”-j$(z)¢_1)-

Then 7" (Lyg™) = 7™(g") so that the target coordinates
are G invariant.
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Decompose Q*(H™®) = @, ;,Q59*, where

1 is the horizontal degree in J°°
7 is the contact degree in J°
k is the contact degree in G*°

Let 77 be the projection 7y: Q* — @, ; Q70
wy preserves G invariance.

The lift of w € Q*(J°) is ANw) = 7y(7*(w)).

Given a moving frame p for a pseudogroup ¢, the invari-
antization t(w) of w is

Theorem. The invariantization of a local coframe on J™°
produces an G-invariant local coframe on J°.
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VARIATIONAL BICOMPLEX

The cotangent bundle to J*°(FE) splits

D (JZ(E) = ) (J=(E)),

r,s>0

where w € Q"%(J*(F)) is a finite sum of terms of the
form

f(a:i,uo‘,uf‘, .. ,uf‘l,,,ik)d:cjl A AdadT /\(9?11 R /\91‘9.

(05 = du5 — uﬁjd:vj)

Coordinate total derivative operators

9, 0
D= — o
ozt + Z u“(?u?
|[1|1>0
—a+uo‘8+uo‘a+uo‘ 0 +
 Oxt " Ou & 8u;?‘ ik 8u§?‘k

span the module of horizontal vector fields, which gives
rise to a flat connection on J*°(E) — M
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Splitting of the exterior derivative:

d=dy +dy, d* =0,
dp : Q75 — Qrtls, ds; = 0,
dy : Q"% — QrstL 42 =0,

dgdy + dydyg = 0.



Get the double complex

0 — QO3
o
0 — Q02 4, 12 du . gm-12
o e e
0 — Q01 45, L1 i, gm-Ll
o e s
R — Q00 41, o du, . om-1,0
[« I [

Qm,3
o

dH} Qm,2
o

dH; Qm,l
o

Au, m,0
[+

i} Om
M

21



Define

aluﬁ _ { 5@@;11 o '5;2)7 if ’I’ — ‘J‘v
a”J

0O otherwise.

Interior Euler operators F1: Q"% — Qms=1 s> 1,

Flw) = 3 (” ,}‘J’) (—D),(01 ).

|J[=0

Integration-by-parts operator

I:Q™5(J®(E)) = F5(J®(E)) c Q™3(J>®(E)),
I(w) = % 0° A Fy(w).

Spaces of functional s-forms F°* = I[(Q"™%), s > 1.
Differentials &y = I ody : F5 — F5t1
Then 6% = 0.

22

s>1,



23

Free Variational Bicompler (Anderson, Gelfand, Tsujishita,
Tulczyjew, Vinogradov)

0 — QO3 Qm3 Ly 73
Tdv Tdv Tév
0 — Q02 41, 12 du . gm-12 iy gma L g
Tdv Tdv Tdv Tdv T(SV
0 — Q01 21y, i1 du L gmo11 iy gmt L7
Tdv Tdv Tdv Tdv
R — Q00 21, guo dio, . gm-10 da, gm0
[« Ir [ [
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The edge complex

d d
R — 0,0 2H, 01,0 2H,

d _ d ) ) )
dug gm-1,0 48, qmo Sv, p1 v, g2 dv,
Div E H

is called the Fuler-Lagrange complex £*(J*(F)).

Both the variational bicomplex and the Euler-Lagrange
complex are locally exact.

Horizontal homotopy operator

1

B (w) = — Y D0 ANFY(Dj—w)), s>1,
[ 11>0
where ¢ = #ﬁl“ Thus

w=h"dgw) +dgh’’ (W), r<m-—1;

w=I(w)+dghi*(w), r=m.
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Example: E = {(t,x,y,u)} — {(t,x,y)}.

w! = Vidt + Vadx + Vady € QMY
<= a vector field V = (V1,V5,V3),

w? = Widx A dy + Wady A dt + Wadt A dx € Q*°
<= a vector field W = (Wy, Wy, W3),

w? = Ldt A dx A dy € Q>°
<= a Lagrangian L,

wr=A0ANdt Ndz ANdy € F?
<> a differential equation A = 0.

(4) w? =dgw? = Wy = DyVa — Dy Vs,

Wy = D, Vi — D V53, W3 = DiVo — D, V7;
(B) w®=dgw? — L = DW; + D, W5 + D,Ws;
(C) w*=dyw?® —
oL OL OL oL
A=FKEL) =——-D;(—)—-D, D.D
( ) 8u t(ﬁut) (8u$)+ t t(autt)—l_
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Moreover,

1
(D) Sywt = —iﬂgqrﬁ A Owpgayr Ndt Ndx Ady with

0A
HPQT’ S —— | p—i—q—l—rqu?“ A :
A autpg;qyr ( ) ( )
where
0A 0A
EP"(A) = ————(p+q+r+1)D o
( ) autpry?” (p q ) t (aU/tp—i—lqur )
The complex
R — Q00 L1, L0
Grad
iy o i, 30 OV, p1 vy g2 Ov,
Curl Div E H

is locally exact.
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Next let G be a pseudogroup of projectable transforma-
tions acting on FE. By restricting the variational bicom-
plex to pr§G invariant elements one gets the G invariant
variational bicomplex Q5" (J>(E)):

[ CERE

0,3 m,3 I 3
0 — Qg Qg — Jg
o o o
0,2 H 1,2 H m—1,2 H m,2 1 2
I T

d d — d
R — Qg,o H Qé,o H QZL 1,0 H QZL,O



28

The edge complex

d d
R — Q%0 21, L0 dm,

d — d E H )
H QTgn 1,0 H QTgfL,O = Fé N 5 V> L.

is the G invariant Euler-Lagrange complex £5(J°(E)).
Associated cohomology spaces:

e oo ker 8y : EL — ELT1
H"(EG(J™(E))) = LY

im dy : 55_1 — & '
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EXAMPLE: INTEGRABLE SYSTEMS AGAIN.

PKP EQUATION:

Bundle: E =R3 xR — R;
Group: symmetry group gpxp of the PKP equation.

The PKP source form

3 3
APKP = (Utm + §’U/J;Uxx + Ugpprr T+ 182uyy) 9/\dt/\da:/\dy

generates non-trivial cohomology in H*(Ey, . p (J(E))).

Compute H*(Egp e p (J(E)))!
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MKdV EQUATION:

Bundle: E =R? xR — R;
Group: symmetry group gymkqyv of the MKdAV equation.

The MKdV source form

Anvgav = (U = Ugpzr — Uglize) O A dt N da
generates non-trivial cohomology in H? (&g, iy (JZ(F))).
Compute H* (g, y0y (J° (E)))!

DAVEY-STEWARTSON EQUATION:

Bundle: E =R3 x R? — R?;
Group: symmetry group gps of the DS equation.

Compute H*(Eqps (J*(E)))!
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NATURAL VARIATIONAL BICOMPLEX FOR RIEMANNIAN
METRICS

Bundle: E =R™ x Q™ — R™;
Group: g = lift of X(R™) to E.

Pontrjagin cl < m;
Gilkey: Hp(gg(JOO(E))) _ { ontrjagin classes, p < m

Fuler class, p = m = 2g.

{0}, m=0,1,2 (mod 4);

Anderson: Hm+1(5g(JOO(E))) - { I(so(m)), m =3 (mod 4),

where I(so(m)) denotes so(m) invariant polynomials.

Compute H*(E4(J>(E)))!
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FOLIATIONS

Codimension ¢ integrable distribution A is determined by
wl, ... w? with dw® = A w?.

Model using the trivial foliation Fr = {(2%, y%)|y* = c*}
of R™:
M =TRP x R? = {(z*,y*)}.

P=Gl(q)x M — M, Q=&T*M x M — M.
q2

E=PoQ— M; E={(z"y% 951} — {(x"y")}.
V C JL(E) consists of all 1-jets satisfying dw® = nf A wP.

Group:

0
ox?

0
8ya}

+9*(y)

g={X € XR™)|X = f'(a?,1")

consist of vector fields on R™ preserving Fr.

Compute H*(E4(V>))!
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Exactness of the Horizontal Rows.

Theorem. Let g be a pseudgroup of projectable transfor-
mations acting on E — M, and let w* and ©% be prg
invariant horizontal frame and zeroth order contact frame

defined on some open set U C J°°(F) contained in an
adapted coordinate system.

Then the interior rows of the prg invariant augmented
variational bicomplex restricted to U are exact,

H*(Qg°(J>U))) ={0},  s=1

Corollary. Under the above hypothesis

H*(E2(U), 0v) ~ H*(Q(U), d).
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The proof is based on the analysis of the highest weight
terms in the contact forms:

Suppose
dgw =0 forweQy”®, s=>1.

Let H(w) consists of the highest weight terms in w with
the coefficients having been frozen. Then

dHH(w) = 0,

so the standard horizontal homotopy operator produces a

form
ne b with dyi=H(Ww).

Next by unfreezing the coefficients in 77 and doing some
algebra, one can construct a g invariant form 7 so that
the highest weight terms in dyn agree with H(w),

H(dun) = H(w).
Now proceed by induction.
The proof can be straightforwardly modified to prove the
exactness of the interior rows of the invariant variational

quasi-tricomplex (Kogan, Olver, 2001) for non-projectable
pseudogroup actions.
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Computational Techniques.

1. METHODS BASED ON THE EXPLICIT DESCRIPTION OF
THE INVARIANT VARIATIONAL BICOMPLEX. Recall that
the invariantization process yields complete sets of differ-
ential invariants and an invariant coframe.

H*(Q24(U), d) can be computed with the help of the double
complex spectral sequence associated with the filtration

FPQr = @QZPQF(]'
The first page of this consists of

H*(Qq(U), dv).
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GELFAND-FUKS COHOMOLOGY: Formal power series vec-
tor fields on R™

m 8 .
Wm:{Zal@\alER[[xl,...,x ]]}
i=1

Lie bracket [, |: W, x W, — W,.

Give W,,, a topology relative to the ideal m = (z!, ..., 2™).

A% (W,,): continuous alternating functionals on W,.

A% (W,,) is generated by (53-1,“ i where
: 0 ok ql
7 l _

The differential d : AL (W,,) — AT (W,,) is induced by
Lie bracket of vector fields so that

dw(X,Y) = —w([X,Y]).

d? = 0!
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Let g, C g C W,, be subalgebras.
Define

Ac(g) = AZ(Wh)jg,
Ac(9,80) ={w e AL(g)|X 2w =0, X 2 dw=0,X € go}.

The Gelfand-Fuks cohomology H* (g, g,) of g relative to g,
is the cohomology of the complex (A¥(g,g8,),d).

If g is finite dimensional, then H*(g, g,) is the usual Lie
algebra cohomology.
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EVALUATION MAPPING: Pick 6* € J>®(F).

For a given infinitesimal transformation group g acting on
E, let
go ={X € g|prX(c™) =0}

Define p: ©3(J°°(E)) — A%(g, go) by
p(w)(X1,..., X,) = (=1)"w(pr Xu,...,pr X,)(0).

Then p is a cochain mapping, that is, commutes with the
application of d, and thus induces a mapping

p s H*(Qg(JZ(E)), d) — H™ (g, 80)-
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2. EQUIVARIANT DEFORMATIONS

Construct a subbundle K> C U C J>*(F) with
(i) prg acting transitively on °; and

(ii) K is pr g equivariant strong deformation retract of
U, that is, there is a smooth map H: U x [0,1] - U

such that

H(c>™,0)=0 for all o> € U,

H(c>,1) e K= for all o> € U,

H(oc™,t) =0 for all (c°°,t) € K> x [0, 1],
(H)«(pr X ) = pr X|g(oe ) forall X € g,

(e, t) e U x [0, 1].
Under these conditions the inclusion map
L K —=U
and the evaluation map
0: Qg(K™) — A(g, go)

induce isomorphisms in cohomology
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3. MoOVING FRAMES: Recall that
Tn: HTLK — Jn

is an equivariant local diffeomorphism, so it suffices to
compute H*(Q5(Hjy),d). Now the action of G on K is
trivial, so by choosing /C with trivial de Rham cohomology,
the Kiinneth formula implies that

But QF(G) is effectively described by the infinitesimal de-
termining equations.

Ideally the cohomology can be computed directly from the
infinitesimal determining equations for G.
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PKP equation again. The symmetry group gpxp ad-
mits a basis a”, 8", ¥", v™, ¥"*, n > 0, of invariant forms

so that

o 2/6k A ,Yn—k—|—2)}’

Z){& N k+1+;&k+1/\ﬁn k

:z(k){a AR ak )

k=0

_ — (7 n—kt+1l L pi1 n—k 2 2.k n—k+1
= Z {a Ay —a T Ay — =56 NS },
Pt k 3 3

i n + 4

— ( ){Oék A ,Un—k—l—l + §52(5k+1 A ,Yn—k—l—l

k=0

n
NE

e
|
=)

gf}/k A fyn—k:—kl}.

+BkAU%k+3
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Let A be a non-vanishing differential function on some
open set U C J°(F) satisfying

DA

1
Xi(A)+ =Af'(t) = — =

and let B be a differential function on U satisfying

pr X (B) + A () =0, G0 =0,
For example, one can choose
A= (uxn)n+r1, and
= —§32ufcn—1y(u$n)_z—ﬁ, n > 3.

2
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Theorem. Suppose that differential functions A and B,
defined on an open U C J°(F), are chosen as above.
Then the dimensions of the cohomology spaces

HP(Ex (U),dy) are

gPKP
p 12 3 4 5 6 7 p=>8
dim \ o 1 1 3 3 2 3 0

Let {aY, 3Y,7°} be the gpxp invariant horizontal frame
defined by

al = Adt, BY = A?%dy + A3 Bdt,
2
0 = Adx — gSQAQde + A3Cdt,

where C' = —%uagA_2 — %3232, and let K be the gpxp
differential invariant

3 3
K = (u + Zszuyy + iumum)A_‘r’.
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Moreover, let Al, A% € &1 (U) be the source forms

gPKP
1 3 3 9
A" = (ugg + 5 el + 15 Uyy ) dt N dx A dy A du,

A? = Ugper dt Adx A dy A du,

and let A% € £ (U) be the source form which is the

Fuler-Lagrange expression

A3 =E(BKa°® A B° A40).

Note that the PKP source form is the sum
Apgp =AM+ A%

Corollary. Let A € 5§m<p (U) be a gpK p invariant source
form that is the Euler-Lagrange expression of some La-
grangian 3-form A\ € E3(U). Then there are constants
c1, Co, c3 and a gprp tnvariant Lagrangian 3-form Ao €

E3 (U) such that

gPKP

A = ClAl + 02A2 + C3A3 -+ E()\O)



Natural Variational Bicomplex of Riemannian
Metrics.

The coframe
dz’,
0;; = dvgij,
w;kall"'lp = v(llvl2 T vlp)dvrg'k:)
ijirtzty, = Vi, Vis - Vi ydy R i,
transforms homogeneously under g = X'(R™) =
Q5 (J°(F)) can be described explicitly.
Let

w; = 9" dv g,
Vi = da® Ady T},

o :w,ﬁj/\w;“.

45
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Use the bicomplex spectral sequence:

H**(Qg(J*(FE)),dy) is generated by
P(w}), Q(v;), Pf(o)),
where P, @) are gl(m) invariant polynomials =
H*(Qg(J=(E)),d), H™(E(J7(E)),dv)

can be computed by snaking.
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Or, J°°(FE) can be deformed equivariantly to the bundle

of flat metrics =
H*(Qg(J>*(E))) ~ H™ (g, so(m)).
Truncated Weil algebra: Start with

C1,C2,...,Cm,
hl,hg,...,h2k+1, 2k+1§m<2k+3,

where
deg Ci = 27/’ deg hz = 21 — 1’ and
dC@‘ = O, dhz = ¢;.
W—O(m) _ A(h17 h/37 e ey h2k§+1) ® P(Cl,C2, ceey Cm) .

{terms of degree > 2m in ¢, }
Bott, Hafliger:
H*(WO(m)), m odd;

H*(g,s0(m)) = { H*(WO)(m))[E]/(E2 — Cm), M even.
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Foliations. Secondary characteristic classes:
h* the dual of a given finite dimensional Lie algebra §.
Weil algebra: W(h) = A(h*) @ S(h*)
Filtration F,.W(h) = 2362#\*(?)*) ® ST(h*).
Differential
dw(7®1) =107+ dyy® 1,
where dyy(v, w) = v([v,w]) for v € A().

Specialize to h = gl(q), and define the truncated Weil al-
gebra by

Wigl(q)) = W(gl(q))/ Fag+1W (gl(q)).

Recall dw® = ngwb. Define

a

ny =1y +pedvwy,  pp = (w)j,
and write
G = dijg —Tje N1y
Then ¢yt A--- A ¢ =0 for r > g. (~ Bott’s vanishing
theorem)
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Let ef € gl(q)*, ef(A) = A7.
Define
®: Wi(gl(q)) = Q2 (V™)

by
Pley ®1) =1y, P(1®ep) = Cy,

and extend multiplicatively. Then ® induces a homomor-
phism B
$: H*(W(gl(g))) — H*(E5(V>)).

For example, H*(W (gl(2))) is generated by

(M1 +75) A d(my + 75) Ad(fy +73);

(€1 ACE—CACE) A +15);

(Ci NG — G AC) A (7 — 1) ATl AT
d(my +13) Ad(my +75) AT ATy AT AT
(C1 NG —Ga ACT) AT ATl AT ATl

Open question: Is ® surjective?



