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“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598601



moving frames # frames




Equivariant Moving Frames

Definition.

A moving frame is a G-equivariant map (section)

p: M — G
Equivariance:
g-p(2) left moving frame
plg-z) = . . .
p(z)-g right moving frame

pleft(z) = pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: G,={9g|lg-z=2} for ze M

e free — the only group element g € G which fixes one point
z € M is the identity
—> G, =A{e}forall ze M

° — the orbits all have the same dimension as G
—> (G, C G is discrete for all z € M

e regular — the orbits form a regular foliation
% irrational flow on the torus
% irrational flow on the torus

e cffective — the only group element which fixes every point in
M is the identity: g-z =z for all z € M iff g = e:

Gl = N G, =1

zeM



Geometric Construction

Normalization = choice of cross-section to the group orbits




Geometric Construction

K

Normalization = choice of cross-section to the group orbits




Geometric Construction

Normalization = choice of cross-section to the group orbits




Geometric Construction

Normalization = choice of cross-section to the group orbits




Algebraic Construction
—dimG < m=dimM

Coordinate cross-section

K= =@, 00 8. =C, }
left right
w(g,z) =g 1 2 w(g,2) =gz
=(g.,,...,0,) — group parameters

z=1(zy,...,%2,) — coordinates on M



Choose " = dim GG components to normalize:

wy(g,2)=¢; w,.(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
— Implicit Function Theorem

The solution
= p(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(z)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

L(2) = 0,1 (p(2),2) o Ly y(2) = wo(p(2), 2)

— These are the coordinates of the canonical form k € K.



Invariantization

Definition. The invariantization of a function

F: M — R with respect to a right moving frame

g = p(z) is the the invariant function I = ¢(F') defined
by

L(Zl) = Cpy - [’(Zr) — CT" L(ZT+1) — ]1<Z>7 s [’(Zm) — Im—r(’Z)'

cross-section variables fundamental invariants
“phantom invariants”

L F(zy,-.h2,)] = Fleyy..oye,1i(2),. .. L, (%))




Invariantization amounts to restricting F' to the cross-
section

I|[K=F|K

and then requiring I = «(F') be constant on orbits.

Invariantization defines a canonical projection

. : functions +—— Invariants

In particular, if I(z) is an invariant, then «(I) = I.
Rewrite Rule:

I(zyy...,2,,) = I(c,...,c., 1(2),..., 1 . (2))




Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m <r=dmG.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

e An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G™: J"(M,p) — J"(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx--+xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
Ggm . g o )

—> joint or semi-differential invariants
—> invariant numerical approximations



Binary form:
" (n
Q(z) = ) ( )akxk
im0 \F

Equivalence of polynomials (binary forms):

Q)= e+ @(2E7) 9= (2 ) ece




Action of G = GL(2) on R? (or C?):

| ar + 3 u
(@ u): (vfc+5’ (7w+5)“> ot

Prolongation:
ar+
— = 0
Yy pp— 0g=7%+
v=0 "u A=ad— By
o Uy, —nyu
U?J_ A on—1
0% uy, —2(n—1)you, +n(n—1)y*u
Yyy = A2 gn—2

’Uyyy:...



Normalization:
T+

= :O =
Yy o T +
v=0 "u=1 =ad—
U, —NYU
Uy: X n—1 =0
2u,, —2(n—1)v0u, +n(n—1)%u 1
(Y = f—
Yy 2 n—2 n(n — 1)
v —

Yyyy



Moving frame:

_ u(l—n)/n\/ﬁ _ _xu(l—n)/n\/ﬁ

_ %u(l—n)/n _ ul/n o % xu(l—n)/n
Hessian:

H=n(n—1Duu,, —(n—1)%u#0

rx

Note: H=0 ifand only if Q(z) = (axz+b)"
—> Totally singular forms

Differential invariants:

. J B  K+3(n—-2) dk
yyy n2(n—1) . Yyyyy — n3(n — 1) ds




Absolute rational covariants:

T2 U
_ K="

2
T =1 e

3(Q, Q% =n(n-1)QQ" - (n - 1)’Q"”
(@Q, )Y = (©2n—4)Q'H —nQH’

H
T
U= (@ 1Y =@Bn-6QT—nQT’

deg@) =n degH =2n—4 degT =3n—206

2
~ QprQyy — Qzy
~ QscHy - Qstc

~ QggTy _ QyTx

degU = 4n — 8§



Differential Invariants

A differential invariant is an invariant function
I:J" — R for the prolonged (pseudo-)group action

1(g™ - (&, u™)) = I(z,u™)

—> curvature, torsion, ...

Invariant differential operators:

D,,...,D

» — arc length derivative

e If I is a differential invariant, so is D, 1.

Z(G) — the algebra of differential invariants




The Basis Theorem

Theorem. The differential invariant algebra Z(G) is locally
generated by a finite number of differential invariants

I, ... .1,
and p = dim S invariant differential operators

Dy, ... .,D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I, =D, D, D, I

In~ K°

—> Lie groups: Lie, Ousiannikov

—> Lie pseudo-groups: Tresse, Kumpera, Kruglikov—-Lychagin,
Munoz—Muriel-Rodriguez, Pohjanpelto—O



Key Issues

e Minimal basis of generating invariants: I,..., I,

e Commutation formulae for

the invariant differential operators:
p .
1
[D;; Dyl =2 Y53 D,
i=1

—> Non-commutative differential algebra

e Syzygies (functional relations) among

the differentiated invariants:
O ... D,I. ... )=0

—> (Codazzi relations



Recurrence Formulae

* Invariantization and differentiation do not commute.

D u(F)=uD.F) + Y R (v (F))

J

k=1
w'=1(dr') — invariant coframe
D, =u(D,:) — dual invariant differential operators

Rf — Maurer—Cartan invariants



Recurrence Formulae

D;u(F) =uD,;F) + > Ruv ")(F))

& If ((F) = cis a phantom differential invariant, then the left
hand side of the recurrence formula is zero. The collection
of all such phantom recurrence formulae form a linear
algebraic system of equations that can be uniquely solved

for the Maurer—Cartan invariants R;‘!

¢ Once the Maurer—Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations com-

pletely determine the structure of the differential invariant
aloebra Z(G)!



The Maurer—Cartan Invariants

RY — Maurer—Cartan invariants
vy, ... v, €g — infinitesimal generators
pt, ..opum€g® — dual Maurer-Cartan forms

Invariantized Maurer—Cartan forms:



The Maurer—Cartan Invariants

R;P —  Maurer—Cartan invariants
vy, ... Vv, €g — infinitesimal generators
pt, ... pmeg* — dual Maurer-Cartan forms

Invariantized Maurer—Cartan forms:
V=t = Y RiW

Remark: When G C GL(N), the Maurer—Cartan invariants 2}
are the entries of the Frenet matrices

Di p(ﬂf, u(n)) ) ,O(CC, u(n))—l



The Maurer—Cartan Invariants

If the moving frame cross-section is given by
Z(z,u)=¢,, ... Z(z,u™)=c,
then the Maurer-Cartan matrix R = ( R} ) is given by

R=—D(Z)v(Z)™"]

where

D(Z)=(D,z,),  v(Z)=(v"(Z)).

Corollary. If the moving frame has order n, then the
Maurer—Cartan invariants have order < n + 1.



The Commutator Invariants

Explicit formulae:

r

=3 3 RUDE)  BuUDE).

Follows from the recurrence formulae for
dw' = d[u(dz")] = o(d?z") + Y 7" A v, (dx")]
k=1

=— > VW Aw4 -
i<k



Generating Differential Invariants

Theorem. (Fels-0) If the moving frame has order n, then the
set of normalized differential invariants of order < n + 1
forms a generating set.

Theorem. (O-Hubert) Given a minimal order cross-section,
meaning that, for each £k =0,1,...,n,
Z(z,u®)=¢,, ... Z (z,u®)=c

Tk TE’

defines a cross-section for the action of G(*) on J*, then the
differential invariants «(D,Z;) fori = 1,...,p, j = 1,...,r
and, in the intransitive case, the order zero invariants, form
a generating set.

Theorem. (Hubert) The Maurer—Cartan invariants and, in
the intransitive case, the order zero invariants serve to
generate the differential invariant algebra Z(G).



The Differential Invariant Algebra

Thus, remarkably, the structure of Z(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so Z(G) is a rational, non-
commutative differential algebra.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1

generating differential invariants xq,..., K Every other

m—1-
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive + no pseudo-stabilization.



Curves

Theorem. Let G be an ordinary™ Lie group acting on the m-
dimensional manifold M. Then, locally, there exist m — 1

generating differential invariants xq,..., K Every other

m—1-
differential invariant can be written as a function of the
generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

* ordinary = transitive + no pseudo-stabilization.

— m=3 — curvature k & torsion T



Theorem.

The algebra of equi-affine differential invariants
for non-degenerate surfaces is generated by the
Pick invariant through invariant differentiation.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.




Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.

K = ®(H,D,H,D,H, ...)



Euclidean Proof

Commutation relation:
[D17D2] — D11)2 - D2D1 — ZQD1 - leza
Commutator invariants:

D1k, Z, =

Dysy Doty

Z, =



Euclidean Proof

Commutation relation:

| D1, Dy =D Dy =Dy Dy = Z, Dy = Z, Dy,
Commutator invariants:
Dk Z, = Dk

Z, =
K1 — Koy Ko — Ky

Codazzi relation:

K = kikyg = —(Dy+ 2,) 2, — (Dy + Z,) Z,



Euclidean Proof

Commutation relation:
[D17D2] — D11)2 - D2D1 — ZQD1 - leza
Commutator invariants:

DKy 7
— 2 o —
K1 — Koy Ko — Ky

Z, =

Codazzi relation:
K = kyky = —(Dy + 2,) 2, — (Dy + 2,) Z,

—> Gauss’

(Guggenheimer)



To determine the commutator invariants:

D,D,H — D,D,H = Z,D,H — 7, D,H

E S
D,D,D,H — D,D,D,H = Z,D,D,H — 7, D,D,H (*)

Nondegenerate surface:

DH  D,H
det(Dlpjﬂ DQDJH> 70,

Solve (x) for Z,, Z, in terms of derivatives of H.
Q.E.D.

Note: Any totally umbilic or constant mean curvature
surface is degenerate. Are there others?



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: I = I.

Constant invariants provide immediate information:
e.g. KR=2 <= K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k=3 Versus Kk =sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants ¢s intrinsic:

e.g. KJS:KJB—l — ER.=r -1

=

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.



Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.

(" The higher order syzygies are all consequences of a
finite number of low order syzygies!



Example — Plane Curves

If non-constant, both x and ., depend on a single
parameter, and so, locally, are subject to a syzygy:

kg = H(K) (*)

But then

K _iH(li) = H'(k) k, = H'(r) H(k)

SS dS

and similarly for s etc.

CEER,
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy ().



The Signature Map

The generating syzygies are encoded by the signature map
>: N —

of the submanifold /N, which is parametrized by
the fundamental differential invariants:

Y(z) = (I(2),. ., 1, (2))

The image
=Im X

is the subset (or classifying submanifold) of V.



Equivalence & Signature

Theorem. Two regular submanifolds are equivalent
N=g-N

if and only if their signatures are identical



Definition. The signature curve S C R? of a curve C C R? is

parametrized by the two lowest order differential invariants

{(-4)) < =




Euclidean space curves: C C R3

={(k,ky, T)} C R3

e K — curvature, 7 — torsion

Euclidean surfaces: S C R?® (generic)

:{<H’K’H,17H,27K,17K,2)} C Rg

e H — mean curvature, K — Gauss curvature

Equi—affine surfaces: S C R3 (generic)
={(P,P,,P,,P;,)} C R

e P — Pick invariant




Equivalence and Signature Curves

Theorem. Two regular curves C and C are equivalent:
C=gqg-C
if and only if their signature curves are identical:

—> object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={g9|lg-NCN}

of a nonsingular submanifold N C M equals the codimen-

sion of its signature:

dimG, = dim N —dim

Corollary. For a nonsingular submanifold N C M,

0 < dimGy < dimN

—> Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
e The submanifold N has a p-dimensional symmetry group
e The signature & degenerates to a point: dim & = 0

e The submanifold has all constant differential invariants

N = H-{z,} is the orbit of a p-dimensional subgroup H C G

—> FEuclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..

—> Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

— Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ¢ .

—> Approximate symmetries



The Index



“Industrial Mathematics”

B
OQ.

— Steve Haker



Nut 1 Nut 2

600
750

550 I_/f\
700
500
Closeness: 0.137673
450
400 500 400 50

650

0
Signature Curve Nut 1 Signature Curve Nut 2
0.01 0.01
0.005 0.005
0 0

/11 Z0.005 11 _0.005

—-0.01 -0.01




Hook 1 Nut 1

750
1000

900 700

800 650
Closeness: 0.031217

700

200 400 500

Signature Curve Hook 1 Signature Curve Nut 1

0.01

0.005

—-0.005

-0.01

-0.015
-0.05




Advantages of the Signature Curve

Purely local — no ambiguities
Symmetries and approximate symmetries

Extends to surfaces and higher dimensional sub-
manifolds

Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to depen-

dence on high order derivatives.



Signatures of Binary Forms

—— Irina Kogan

of a nonsingular binary form Q(z):

Nonsingular:  H(x) #0 and (J'(z), K'(x)) # 0.

Theorem.
Two nonsingular binary forms are equivalent if
and only if their signature curves are identical.



Maximally Symmetric Binary Forms

Theorem. If u = Q(z) is a polynomial, then the following are
equivalent:

e (Q(r) admits a one-parameter symmetry group

e 7?2 is a constant multiple of H?

e Q(x) ~ 2* is complex-equivalent to a monomial

e the signature curve degenerates to a single point

e all the (absolute) differential invariants of () are constant

e the graph of () coincides with the orbit of a
one-parameter subgroup



Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form
Q(x) # 0 of degree n is:

e A two-parameter group if and only if H = 0 if and only if
() is equivalent to a constant. — totally singular

e A one-parameter group if and only if H # 0 and T? = ¢ H?
if and only if Q) is complex-equivalent to a monomial z*,
with k& # 0,n. —> maximally symmetric

e In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

o 2
< {6n—12 U=cH

LQ -
4n — 8 otherwise



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M x --- x M:

I(g-2yy--y9-2,) = I(z,...,2)

A joint differential invariant or
is an invariant depending on the derivatives
at several points z,..., 2, € N on the submanifold:

I(g-2™, ... g 20"y = 1z, 2)




Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(z;, Zj) = |l z; — Zj I

z -

1



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

AB
[Zivzjvzkzvzlvzm] — CD

v



e Three—point projective joint differential invariant
— tangent triangle ratio:

[020][011][122]

[010][121][022]




Joint Euclidean Signature




Joint signature map:
¥:C** — SCR°
a=|z— 2| b=z — 2| ¢=|zy— 2|
d= |2 — 2] e =z — 2] f=12z -z
—> six functions of four variables
Syzygies:
®,(a,b,c,d,e, f) =0 ®,(a,b,c,d,e, f) =0

Universal Cayley—Menger syzygy <= C C R?
2 a? a?+ 0% —d? a’>+c? —¢€?
det|a® +b* — d? 2b? > +c2—f21=0
a’4+c?—e? b2+ - f? 2 c?



Symmetry—Preserving Numerical Methods

e Invariant numerical approximations to differential
invariants.

e Invariantization of numerical integration methods.

e Multi—space (blow-up/Hilbert scheme?).

—> Structure-preserving algorithms



Invariantization of Numerical Schemes

—> Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge—Kutta Method for
ordinary differential equations, or the Crank—Nicolson method
for parabolic partial differential equations.

If G is a symmetry group of the differential equation,
then one can use an appropriately chosen moving frame to
the numerical scheme, leading to an invariant
numerical scheme that preserves the symmetry group. In
challenging regimes, the resulting invariantized numerical
scheme can, with an inspired choice of moving frame, perform
significantly better than its progenitor.



No Inv]|

< c-<i
I
[eYole)

Invariant Runge-Kutta schemes

Uy, +xu, —(x+ 1u=sinz, u(0)=u,(0)=



Invariantization of Crank—Nicolson
for Burgers’ Equation

Uy = EUgy, +uum

1 1 1 1 1 1
05 05 05 05 05 05
0 0 0 0 0 0
-05 -05 -05 -05 -05 -05
-1 -1 -1 -1 -1 -1
15 0.5 175 05 17 0.5 1 % 05 171 05 17% 0.5




Invariant Variational Problems

According to Lie, any G—invariant variational problem can
be written in terms of the differential invariants:

I[u]:/L(x,u(”))dx:/P(... DI .. ) w

... If — fundamental differential invariants

— invariant differential operators
Dy I — differentiated invariants

wW=w'A---AwP — invariant volume form



If the variational problem is G-invariant, so
Tlu] = /L(m,u(”))dx: /P( DRI ) w

then its Fuler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

K= q +“5920)3/2 curvature (differential invariant)
ds = /1 +u2dx — arc length

d 1 d
D=—= — arc length derivative

ds /1 + u2 dx

Euclidean—invariant variational problem

/Lazu dx—/Pli,/is,liss,.. ) ds

Fuler-Lagrange equations

E(L) ~ F(k,kyKygy ... ) =0

)78 TUss)



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/\/1+ug dx

E(L)=—x=0

—> straight lines

The Elastica (Euler):




General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,liS,/iss,.. ) ds



General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,lis,/iSS,.. ) ds

Invariantized Euler—-Lagrange expression

0 ., OP d
Z 8/{ D_E

n=0



General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,lis,/iss,.. ) ds

Invariantized Euler—Lagrange expression

o0 . OP d
Z c’?/i D=

n=0

Invariantized Hamiltonian

1>7 7



From the Invariant Variational Complex

dy e = A, (9)
—> ¢ — invariant contact form (variation)

Invariant variation of curvature

A&:DQ_'_HQ A*:D2—|—/€2

dy, (ds) = B(Y) A ds
Invariant variation of arc length:

B=-k B*=—k

Invariant Euler-Lagrange formula

E(L) = A*§(P) — B*H'(P) = (D? + k?) £(P) + k H(P).



/L:r;u dZC—/P/i,KJS,KSS,.. ) ds

Fuclidean—invariant Euler-Lagrange formula

E(L) = (D*+ &%) E(P) + ks H'(P) =0

The Elastica: T[u] = /%/{2 ds P =




The shape of a Mobius strip

E. L. STAROSTIN AND G. H. M. VAN DER HELIDEN®

Cesite bor Hosfinesar Dynamics, Degariment of Civil and Emviransentsl Enginesring, Usiversity College Londas, Londsn WE1E 5T, LK

*g-mail; g.heljdan@iucan ok

Fushsnng oning: 15 July 2007, ool 10 108RRmat1 229

The Mabius strip, obtzined by tuking a rectangular strip of
plastic or paper. twisting one end theough 180", and then
jorning the ends, is the canonicl exanmple of u one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since s first formulation in refs 1,2, Here we
wse the imvariant varigtional bicomplex formalism to derive
the first equilibrivm eguations for 2 wide developable strip
undergoing large deformations, theceby giving the frst non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Mobies steip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat trinngular regions, a
feature also faumiliar from fabric draping” and paper crumpling™,
This could give new insight nte enespy localization phenomena
in unstectchable sheets®, which might help to predict points
dmo{mmtg. It coubd also eid our understanding of the

1l mﬂp}rm:-a] prupertios of rana-
md mu'rn&mpk Miabius m—lp structures”

11 s Bxir o day that the Mobius strip 3 one of the few wons
of mathematics that have been absorbed into wider culture. It
b mrthematical besuty and inspired artists such as Escher™, In
engineering, pulley belts are often used in the form of Ml irips
tor wear "otk sdces equally. At a mocl: sorsller seabe, Miibius stzips
have recently been formed in ribbon-shaped Nhle; crystals under
certadn erowtl conditions invalvine a Bree temperature eradient™.

Figure 1 Phato of 2 paper Mabius strip of aspect ratin 2. Trg sinp adopts a
hermelersic shape netenshity of e rateral causes the surtacs 1o be
deveiopabie, Bs stright genaratoss A ciwn 2nd e colourng wirns acoondiog o
1z bending enargy cansty.
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Evolution of Invariants and Signatures

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =1t+Jn
dt

e [, J — differential invariants

e t — ‘“unit tangent”

e n — ‘“unit normal”

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e C,=n — geometric optics or grassfire flow;
o ,=kKn — curve shortening flow;
e C,=r'Y3n — equi-affine invariant curve shortening flow:

¢
¢,

C,=n

equi—affine »

modified Korteweg—deVries flow;

thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn

preserves arc length if and only if

B(J)+DI=0.
D — invariant arc length derivative
B — invariant arc length variation

dy, (ds) = B(Y) A ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C, = Jn,

Ok Ok
OF _ A (J s — 7).
ToAl), Teoaw)
Invariant variations:
de:A/{(19>, dv H}S :Alis(ﬁ)
A_= A — invariant variation of curvature;

A =DA_+ kK, — invariant variation of «,.
S



Euclidean—1invariant Curve Evolution

Normal flow: (), =Jn

Ok 29

o7 = AxlJ) = (D" + %) J,

a"{s 3 2

v = A, (J)=(D°+r*D+3kk,) J.

Warning: For non-intrinsic flows, 0, and 9, do not commute!

Theorem. Under the curve shortening flow C;, = —kn,
the signature curve k, = H(t, k) evolves according to the
parabolic equation

OH
e H*H_ —r’H_+4r*H



Smoothed Ventricle Signature




Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k,=R(J)  where R=A-rD'B (%)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

—

—
—
—

Hasimoto
Langer, Singer, Perline
Mari—Beffa, Sanders, Wang

Qu, Chou, Anco, and many more ...
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Euclidean plane curves
G = SE(2) = SO(2) x R?
dy, k = (D + K%) 0, dyw=—-KkINw
— A =D?+ Kk, B=—-k

R:A—/{SD_IB:D2—|—/€2—|—KJSD_1'/€

_ 3 2
8) _Rsss+§/€ K

Kk, = R(k

—> modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2) x R?
dy, k = A1), dyw = B(W)ANw

A:D4+%/£D2+%/$SD+%/£SS+%/$2, B D* — 2k,

1
3
R=A-xD'B

:D4—|—%/€D2—|—%/€SD—|—%RSS—|—%/€2—|—%/€SD_1-/'i

_ _ 5 5 5.2
Ky = 7z(’%s) = Ry + gK/K'SSS + §/€s’%ss + §/€ K
— Sawada—Kotera equation
Recursion operator:

—

R=R-(D*+3k+3KD7").



3
KTgg — KTy + 2K°T

S ,12

—27D, — T,
1 K K2 — 72 K.T2 — 26TT
~D; — DI + Dy 4 ="
K K K K

B=(rk 0)



Recursion operator:

— vortex filament flow

—> mnonlinear Schrodinger equation (Hasimoto)



