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É. Cotton, Élie Cartan

Modern developments: (1970’s)

S.S. Chern, M. Green, P. Griffiths, G. Jensen, . . .

The equivariant approach: (1997 – )

M. Fels & PJO, Moving coframes. I. A practical algorithm, Acta
Appl. Math. 51 (1998) 161-213; II. Regularization and theo-
retical foundations, Acta Appl. Math. 55 (1999) 127-208.

E.L. Mansfield, A Practical Guide to the Invariant Calculus,
Cambridge University Press, Cambridge, 2010



“I did not quite understand how he [Cartan] does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598–601



moving frames "= frames



Equivariant Moving Frames

Definition.

A moving frame is a G-equivariant map (section)

ρ : M −→ G

Equivariance:

ρ(g·z) =

{
g · ρ(z) left moving frame

ρ(z) · g−1 right moving frame

ρleft(z) = ρright(z)−1



The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z ∈ M if and
only if G acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: Gz = { g | g · z = z } for z ∈ M

• free — the only group element g ∈ G which fixes one point
z ∈ M is the identity

=⇒ Gz = {e} for all z ∈ M

• locally free — the orbits all have the same dimension as G
=⇒ Gz ⊂ G is discrete for all z ∈ M

• regular — the orbits form a regular foliation
"≈ irrational flow on the torus
"≈ irrational flow on the torus

• effective — the only group element which fixes every point in
M is the identity: g · z = z for all z ∈ M iff g = e:

G∗
M =

\

z∈M
Gz = {e}



Geometric Construction
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Normalization = choice of cross-section to the group orbits
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Algebraic Construction

r = dim G ≤ m = dim M

Coordinate cross-section

K = { z1 = c1, . . . , zr = cr }

left right

w(g, z) = g−1 · z w(g, z) = g · z

g = (g1, . . . , gr) — group parameters

z = (z1, . . . , zm) — coordinates on M



Choose r = dim G components to normalize:

w1(g, z)= c1 . . . wr(g, z)= cr

Solve for the group parameters g = (g1, . . . , gr)

=⇒ Implicit Function Theorem

The solution
g = ρ(z)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

g = ρ(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants

I1(z) = wr+1(ρ(z), z) . . . Im−r(z) = wm(ρ(z), z)

=⇒ These are the coordinates of the canonical form k ∈ K.



Invariantization

Definition. The invariantization of a function
F : M → R with respect to a right moving frame
g = ρ(z) is the the invariant function I = ι(F ) defined
by

I(z) = F (ρ(z) · z).

ι(z1) = c1, . . . ι(zr) = cr, ι(zr+1) = I1(z), . . . ι(zm) = Im−r(z).

cross-section variables fundamental invariants
“phantom invariants”

ι [ F (z1, . . . , zm) ] = F (c1, . . . , cr, I1(z), . . . , Im−r(z))



Invariantization amounts to restricting F to the cross-
section

I |K = F |K
and then requiring I = ι(F ) be constant on orbits.

Invariantization defines a canonical projection

ι : functions +−→ invariants

In particular, if I(z) is an invariant, then ι(I) = I.

Rewrite Rule:

I(z1, . . . , zm) = I(c1, . . . , cr, I1(z), . . . , Im−r(z))



Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Freeness typically fails because the dimension
of the underlying manifold is not large enough, i.e.,
m < r = dim G.

Thus, to make the action free, we must increase
the dimension of the space via some natural prolonga-
tion procedure.

• An effective action can usually be made free by:



• Prolonging to derivatives (jet space)

G(n) : Jn(M, p) −→ Jn(M, p)

=⇒ differential invariants

• Prolonging to Cartesian product actions

G×n : M × · · · × M −→ M × · · · × M

=⇒ joint invariants

• Prolonging to “multi-space”

G(n) : M (n) −→ M (n)

=⇒ joint or semi-differential invariants
=⇒ invariant numerical approximations



Classical Invariant Theory

Binary form:

Q(x) =
n∑

k=0

(
n

k

)

ak xk

Equivalence of polynomials (binary forms):

Q(x) = (γx + δ)n Q

(
αx + β

γx + δ

)

g =

(
α β
γ δ

)

∈ GL(2)



Action of G = GL(2) on R2 (or C2):

(x, u) +−→
(
αx + β

γx + δ
,

u

(γx + δ)n

)

n "= 0, 1

Prolongation:

y =
αx + β

γ x + δ
σ = γ x + δ

v = σ−n u ∆ = α δ − β γ

vy =
σ ux − nγ u

∆ σn−1

vyy =
σ2 uxx − 2(n − 1)γ σ ux + n(n − 1)γ2 u

∆2 σn−2

vyyy = · · ·



Normalization:

y =
αx + β

γ x + δ
= 0 σ = γ x + δ

v = σ−n u = 1 ∆ = α δ − β γ

vy =
σ ux − nγ u

∆ σn−1
= 0

vyy =
σ2 uxx − 2(n − 1) γ σ ux + n(n − 1)γ2 u

∆2 σn−2
=

1

n(n − 1)

vyyy = · · ·



Moving frame:

α = u(1−n)/n
√

H β = −x u(1−n)/n
√

H

γ = 1
n u(1−n)/n δ = u1/n − 1

n xu(1−n)/n

Hessian:

H = n(n − 1)u uxx − (n − 1)2u2
x "= 0

Note: H ≡ 0 if and only if Q(x) = (a x + b)n

=⇒ Totally singular forms

Differential invariants:

vyyy +−→
J

n2(n − 1)
= κ vyyyy +−→

K + 3(n − 2)

n3(n − 1)
=

dκ

ds



Absolute rational covariants:

J2 =
T 2

H3
K =

U

H2

H = 1
2(Q, Q)(2) = n(n − 1)QQ′′ − (n − 1)2Q′2 ∼ QxxQyy − Q2

xy

T = (Q, H)(1) = (2n − 4)Q′H − nQH ′ ∼ QxHy − QyHx

U = (Q, T )(1) = (3n − 6)Q′T − nQT ′ ∼ QxTy − QyTx

deg Q = n deg H = 2n − 4 deg T = 3n − 6 deg U = 4n − 8



Differential Invariants

A differential invariant is an invariant function
I : Jn → R for the prolonged (pseudo-)group action

I(g(n) · (x, u(n))) = I(x, u(n))

=⇒ curvature, torsion, . . .

Invariant differential operators:

D1, . . . ,Dp =⇒ arc length derivative

• If I is a differential invariant, so is DjI.

I(G) — the algebra of differential invariants



The Basis Theorem

Theorem. The differential invariant algebra I(G) is locally
generated by a finite number of differential invariants

I1, . . . , I!

and p = dim S invariant differential operators

D1, . . . ,Dp

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

DJIκ = Dj1Dj2 · · · Djn
Iκ.

=⇒ Lie groups: Lie, Ovsiannikov

=⇒ Lie pseudo-groups: Tresse, Kumpera, Kruglikov–Lychagin,
Muñoz–Muriel–Rodŕıguez, Pohjanpelto–O



Key Issues

• Minimal basis of generating invariants: I1, . . . , I!

• Commutation formulae for

the invariant differential operators:

[Dj,Dk ] =
p∑

i=1

Y i
jk Di

=⇒ Non-commutative differential algebra

• Syzygies (functional relations) among

the differentiated invariants:

Φ( . . . DJIκ . . . ) ≡ 0

=⇒ Codazzi relations



Recurrence Formulae

) Invariantization and differentiation do not commute.

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v

(n)
κ (F ))

ωi = ι(dxi) — invariant coframe

Di = ι(Dxi) — dual invariant differential operators

Rκ
j — Maurer–Cartan invariants



Recurrence Formulae

Dj ι(F ) = ι(DjF ) +
r∑

κ=1

Rκ
j ι(v

(n)
κ (F ))

♠ If ι(F ) = c is a phantom differential invariant, then the left

hand side of the recurrence formula is zero. The collection

of all such phantom recurrence formulae form a linear

algebraic system of equations that can be uniquely solved

for the Maurer–Cartan invariants Rκ
j !

♥ Once the Maurer–Cartan invariants are replaced by their

explicit formulae, the induced recurrence relations com-

pletely determine the structure of the differential invariant

algebra I(G)!



The Maurer–Cartan Invariants

Rκ
j — Maurer–Cartan invariants

v1, . . . vr ∈ g — infinitesimal generators

µ1, . . . µr ∈ g∗ — dual Maurer–Cartan forms

Invariantized Maurer–Cartan forms:

γκ = ρ∗(µκ) ≡
p∑

j =1

Rκ
j ω

j

Remark : When G ⊂ GL(N), the Maurer–Cartan invariants Rκ
j

are the entries of the Frenet matrices

Di ρ(x, u(n)) · ρ(x, u(n))−1
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The Maurer–Cartan Invariants

If the moving frame cross-section is given by

Z1(x, u(n)) = c1, . . . Zr(x, u(n)) = cr,

then the Maurer–Cartan matrix R = ( Rκ
i ) is given by

R = − ι[D(Z)v(Z)−1 ]

where
D(Z) = ( DiZj ), v(Z) = (v(n)

κ (Zi) ).

Corollary. If the moving frame has order n, then the
Maurer–Cartan invariants have order ≤ n + 1.



The Commutator Invariants

Explicit formulae:

Y i
jk =

r∑

κ=1

p∑

j=1

Rκ
j ι(Djξ

i
κ) − Rκ

k ι(Dkξ
i
κ) .

Follows from the recurrence formulae for

dωi = d[ι(dxi)] = ι(d2xi) +
r∑

κ=1

γκ ∧ ι[vκ(dxi)]

= −
∑

j<k

Y i
jk ω

j ∧ ωk + · · ·



Generating Differential Invariants

Theorem. (Fels–O) If the moving frame has order n, then the
set of normalized differential invariants of order ≤ n + 1
forms a generating set.

Theorem. (O–Hubert) Given a minimal order cross-section,
meaning that, for each k = 0, 1, . . . , n,

Z1(x, u(k)) = c1, . . . Zrk
(x, u(k)) = crk

,

defines a cross-section for the action of G(k) on Jk, then the
differential invariants ι(DiZj) for i = 1, . . . , p, j = 1, . . . , r
and, in the intransitive case, the order zero invariants, form
a generating set.

Theorem. (Hubert) The Maurer–Cartan invariants and, in
the intransitive case, the order zero invariants serve to
generate the differential invariant algebra I(G).



The Differential Invariant Algebra

Thus, remarkably, the structure of I(G) can be determined
without knowing the explicit formulae for either the moving
frame, or the differential invariants, or the invariant differ-
ential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M , or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so I(G) is a rational, non-
commutative differential algebra.



Curves

Theorem. Let G be an ordinary# Lie group acting on the m-

dimensional manifold M . Then, locally, there exist m − 1

generating differential invariants κ1, . . . , κm−1. Every other

differential invariant can be written as a function of the

generating differential invariants and their derivatives with

respect to the G-invariant arc length element ds.

# ordinary = transitive + no pseudo-stabilization.

=⇒ m = 3 — curvature κ & torsion τ
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Equi-affine Surfaces

Theorem.

The algebra of equi-affine differential invariants
for non-degenerate surfaces is generated by the
Pick invariant through invariant differentiation.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.

K = Φ(H,D1H,D2H, . . . )



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for
a non-degenerate surface is generated by the
mean curvature through invariant differentiation.
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Euclidean Proof
Commutation relation:

[D1,D2 ] = D1D2 −D2D1 = Z2 D1 − Z1D2,

Commutator invariants:

Z1 =
D1κ2

κ1 − κ2

Z2 =
D2κ1

κ2 − κ1

Codazzi relation:

K = κ1κ2 = − (D1 + Z1)Z1 − (D2 + Z2)Z2

=⇒ Gauss’ Theorema Egregium

=⇒ (Guggenheimer)
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To determine the commutator invariants:

D1D2H −D2D1H = Z2 D1H − Z1D2H

D1D2DJH −D2D1DJH = Z2 D1DJH − Z1 D2DJH
(∗)

Nondegenerate surface:

det

(
D1H D2H

D1DJH D2DJH

)

"= 0,

Solve (∗) for Z1, Z2 in terms of derivatives of H.
Q.E.D.

Note: Any totally umbilic or constant mean curvature
surface is degenerate. Are there others?



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I .

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.



Equivalence & Syzygies

Theorem. (Cartan) Two submanifolds are (locally)
equivalent if and only if they have identical
syzygies among all their differential invariants.

♥ The higher order syzygies are all consequences of a
finite number of low order syzygies!



Example — Plane Curves

If non-constant, both κ and κs depend on a single
parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).



The Signature Map

The generating syzygies are encoded by the signature map

Σ : N −→ S

of the submanifold N , which is parametrized by
the fundamental differential invariants:

Σ(x) = (I1(x), . . . , Im(x))

The image
S = Im Σ

is the signature subset (or classifying submanifold) of N .



Equivalence & Signature

Theorem. Two regular submanifolds are equivalent

N = g · N

if and only if their signatures are identical

S = S



Signature Curves

Definition. The signature curve S ⊂ R2 of a curve C ⊂ R2 is

parametrized by the two lowest order differential invariants

S =

{ (

κ ,
dκ

ds

) }

⊂ R
2



Other Signatures

Euclidean space curves: C ⊂ R3

S = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

S =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

3

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

S =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

3

• P — Pick invariant



Equivalence and Signature Curves

Theorem. Two regular curves C and C are equivalent:

C = g · C

if and only if their signature curves are identical:

S = S

=⇒ object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group

GN = { g | g · N ⊂ N }

of a nonsingular submanifold N ⊂ M equals the codimen-

sion of its signature:

dimGN = dim N − dimS

Corollary. For a nonsingular submanifold N ⊂ M ,

0 ≤ dimGN ≤ dim N

=⇒ Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

• The submanifold N has a p-dimensional symmetry group

• The signature S degenerates to a point: dimS = 0

• The submanifold has all constant differential invariants

• N = H · {z0} is the orbit of a p-dimensional subgroup H ⊂ G

=⇒ Euclidean geometry: circles, lines, helices, spheres, cylinders, planes, . . .

=⇒ Equi-affine plane geometry: conic sections.

=⇒ Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

ιN = min
{

#Σ−1{w}
∣∣∣ w ∈ S

}

=⇒ Self–intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ιN .

=⇒ Approximate symmetries



The Index

Σ

−→

N S



“Industrial Mathematics”

=⇒ Steve Haker
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Advantages of the Signature Curve

• Purely local — no ambiguities

• Symmetries and approximate symmetries

• Extends to surfaces and higher dimensional sub-
manifolds

• Occlusions and reconstruction

Main disadvantage: Noise sensitivity due to depen-
dence on high order derivatives.



Signatures of Binary Forms
=⇒ Irina Kogan

Signature curve of a nonsingular binary form Q(x):

SQ =

{

(J(x)2, K(x)) =

(
T (x)2

H(x)3
,

U(x)

H(x)2

)}

Nonsingular : H(x) "= 0 and (J ′(x),K ′(x)) "= 0.

Theorem.

Two nonsingular binary forms are equivalent if
and only if their signature curves are identical.



Maximally Symmetric Binary Forms

Theorem. If u = Q(x) is a polynomial, then the following are
equivalent:

• Q(x) admits a one-parameter symmetry group

• T 2 is a constant multiple of H3

• Q(x) 3 xk is complex-equivalent to a monomial

• the signature curve degenerates to a single point

• all the (absolute) differential invariants of Q are constant

• the graph of Q coincides with the orbit of a
one-parameter subgroup



Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form
Q(x) "≡ 0 of degree n is:

• A two-parameter group if and only if H ≡ 0 if and only if
Q is equivalent to a constant. =⇒ totally singular

• A one-parameter group if and only if H "≡ 0 and T 2 = cH3

if and only if Q is complex-equivalent to a monomial xk,
with k "= 0, n. =⇒ maximally symmetric

• In all other cases, a finite group whose cardinality equals
the index of the signature curve, and is bounded by

ιQ ≤
{

6n − 12 U = cH2

4n − 8 otherwise



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M × · · · × M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)

A joint differential invariant or semi-differential
invariant is an invariant depending on the derivatives
at several points z1, . . . , zk ∈ N on the submanifold:

I(g · z(n)
1 , . . . , g · z(n)

k ) = I(z(n)
1 , . . . , z

(n)
k )



Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(zi, zj) = ‖ zi − zj ‖

zi

zj



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =
A B

C D

A B

C

D



• Three–point projective joint differential invariant
— tangent triangle ratio:

[ 0 2
!

0 ] [ 0 1
!

1 ] [ 1 2
!

2 ]

[ 0 1
!

0 ] [ 1 2
!

1 ] [ 0 2
!

2 ]

z0 z1

z2

z0 z1

z2



Joint Euclidean Signature

z0
z1

z2
z3

a

b

c d

e

f



Joint signature map:

Σ : C×4 −→ S ⊂ R
6

a = ‖ z0 − z1 ‖ b = ‖ z0 − z2 ‖ c = ‖ z0 − z3 ‖

d = ‖ z1 − z2 ‖ e = ‖ z1 − z3 ‖ f = ‖ z2 − z3 ‖

=⇒ six functions of four variables

Syzygies:

Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy ⇐⇒ C ⊂ R2

det

∣∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣
= 0



Symmetry–Preserving Numerical Methods

• Invariant numerical approximations to differential
invariants.

• Invariantization of numerical integration methods.

• Multi–space (blow-up/Hilbert scheme?).

=⇒ Structure-preserving algorithms



Invariantization of Numerical Schemes
=⇒ Pilwon Kim

Suppose we are given a numerical scheme for integrating
a differential equation, e.g., a Runge–Kutta Method for
ordinary differential equations, or the Crank–Nicolson method
for parabolic partial differential equations.

If G is a symmetry group of the differential equation,
then one can use an appropriately chosen moving frame to
invariantize the numerical scheme, leading to an invariant
numerical scheme that preserves the symmetry group. In
challenging regimes, the resulting invariantized numerical
scheme can, with an inspired choice of moving frame, perform
significantly better than its progenitor.
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Invariant Runge–Kutta schemes

uxx + xux − (x + 1)u = sinx, u(0) = ux(0) = 1.



Invariantization of Crank–Nicolson
for Burgers’ Equation

ut = ε uxx + u ux
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Invariant Variational Problems

According to Lie, any G–invariant variational problem can
be written in terms of the differential invariants:

I[u ] =
∫

L(x, u(n)) dx =
∫

P ( . . . DKIα . . . ) ω

I1, . . . , I! — fundamental differential invariants

D1, . . . ,Dp — invariant differential operators

DKIα — differentiated invariants

ω = ω1 ∧ · · · ∧ ωp — invariant volume form



If the variational problem is G-invariant, so

I[u ] =
∫

L(x, u(n)) dx =
∫

P ( . . . DKIα . . . ) ω

then its Euler–Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

E(L) 3 F ( . . . DKIα . . . ) = 0

Main Problem:

Construct F directly from P .

(P. Griffiths, I. Anderson )



Planar Euclidean group G = SE(2)

κ =
uxx

(1 + u2
x)3/2

— curvature (differential invariant)

ds =
√

1 + u2
x dx — arc length

D =
d

ds
=

1
√

1 + u2
x

d

dx
— arc length derivative

Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ, κs, κss, . . . ) ds

Euler-Lagrange equations

E(L) 3 F (κ, κs, κss, . . . ) = 0



Euclidean Curve Examples

Minimal curves (geodesics):

I[u ] =
∫

ds =
∫ √

1 + u2
x dx

E(L) = −κ = 0
=⇒ straight lines

The Elastica (Euler):

I[u ] =
∫

1
2 κ

2 ds =
∫ u2

xx dx

(1 + u2
x)5/2

E(L) = κss + 1
2 κ

3 = 0
=⇒ elliptic functions



General Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ, κs, κss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =
∞∑

n=0

(−D)n ∂P

∂κn

D =
d

ds

Invariantized Hamiltonian

Hi(P ) =
∑

i>j

κi−j (−D)j ∂P

∂κi

− P



General Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ, κs, κss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =
∞∑

n=0

(−D)n ∂P

∂κn

D =
d

ds

Invariantized Hamiltonian

Hi(P ) =
∑

i>j

κi−j (−D)j ∂P

∂κi

− P



General Euclidean–invariant variational problem

I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ, κs, κss, . . . ) ds

Invariantized Euler–Lagrange expression

E(P ) =
∞∑

n=0

(−D)n ∂P

∂κn

D =
d

ds

Invariantized Hamiltonian

Hi(P ) =
∑

i>j

κi−j (−D)j ∂P

∂κi

− P



From the Invariant Variational Complex

dV κ = Aκ(ϑ)

=⇒ ϑ — invariant contact form (variation)

Invariant variation of curvature

Aκ = D2 + κ2 A∗ = D2 + κ2

dV (ds) = B(ϑ) ∧ ds

Invariant variation of arc length:

B = −κ B∗ = −κ

Invariant Euler-Lagrange formula

E(L) = A∗E(P ) − B∗Hi(P ) = (D2 + κ2) E(P ) + κHi(P ).



I[u ] =
∫

L(x, u(n)) dx =
∫

P (κ, κs, κss, . . . ) ds

Euclidean–invariant Euler-Lagrange formula

E(L) = (D2 + κ2) E(P ) + κHi(P ) = 0

The Elastica: I[u ] =
∫

1
2 κ

2 ds P = 1
2 κ

2

E(P ) = κ Hi(P ) = −P = − 1
2 κ

2

E(L) = (D2 + κ2) κ+ κ (− 1
2 κ

2 )

= κss + 1
2 κ

3 = 0







Evolution of Invariants and Signatures

G — Lie group acting on R2

C(t) — parametrized family of plane curves

G–invariant curve flow:

dC

dt
= V = I t + J n

• I, J — differential invariants

• t — “unit tangent”

• n — “unit normal”

• The tangential component I t only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.



Normal Curve Flows

Ct = J n

Examples — Euclidean–invariant curve flows

• Ct = n — geometric optics or grassfire flow;

• Ct = κn — curve shortening flow;

• Ct = κ1/3 n — equi-affine invariant curve shortening flow:
Ct = nequi−affine ;

• Ct = κs n — modified Korteweg–deVries flow;

• Ct = κss n — thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by

v = I t + J n

preserves arc length if and only if

B(J) + D I = 0.

D — invariant arc length derivative

B — invariant arc length variation

dV (ds) = B(ϑ) ∧ ds



Normal Evolution of Differential Invariants

Theorem. Under a normal flow Ct = J n,

∂κ

∂t
= Aκ(J),

∂κs

∂t
= Aκs

(J).

Invariant variations:

dV κ = Aκ(ϑ), dV κs = Aκs
(ϑ).

Aκ = A — invariant variation of curvature;

Aκs
= DAκ + κκs — invariant variation of κs.



Euclidean–invariant Curve Evolution

Normal flow: Ct = J n

∂κ

∂t
= Aκ(J) = (D2 + κ2) J,

∂κs

∂t
= Aκs

(J) = (D3 + κ2D + 3κκs)J.

Warning : For non-intrinsic flows, ∂t and ∂s do not commute!

Theorem. Under the curve shortening flow Ct = −κn,
the signature curve κs = H(t, κ) evolves according to the
parabolic equation

∂H

∂t
= H2 Hκκ − κ3Hκ + 4κ2H



Smoothed Ventricle Signature
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Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

κt = R(J) where R = A− κsD
−1B (∗)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

=⇒ Hasimoto

=⇒ Langer, Singer, Perline

=⇒ Maŕı–Beffa, Sanders, Wang

=⇒ Qu, Chou, Anco, and many more ...



Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

κt = R(J) where R = A− κsD
−1B (∗)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

=⇒ Hasimoto

=⇒ Langer, Singer, Perline

=⇒ Maŕı–Beffa, Sanders, Wang

=⇒ Qu, Chou, Anco, and many more ...



Euclidean plane curves

G = SE(2) = SO(2) ! R
2

dV κ = (D2 + κ2)ϑ, dV 0 = −κ ϑ ∧0

=⇒ A = D2 + κ2, B = −κ

R = A− κsD
−1B = D2 + κ2 + κsD

−1 · κ

κt = R(κs) = κsss + 3
2 κ

2κs

=⇒ modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2) ! R
2

dV κ = A(ϑ), dV 0 = B(ϑ) ∧0

A = D4 + 5
3 κD

2 + 5
3 κsD + 1

3 κss + 4
9 κ

2, B = 1
3 D

2 − 2
9 κ,

R = A− κsD
−1B

= D4 + 5
3 κD

2 + 4
3 κsD + 1

3 κss + 4
9 κ

2 + 2
9 κsD

−1 · κ

κt = R(κs) = κ5s + 5
3 κκsss + 5

3 κsκss + 5
9 κ

2κs

=⇒ Sawada–Kotera equation
Recursion operator:

R̂ = R · (D2 + 1
3 κ+ 1

3 κsD
−1).



Euclidean space curves

G = SE(3) = SO(3) ! R
3

(
dV κ
dV τ

)

= A
(
ϑ1

ϑ2

)

dV 0 = B
(
ϑ1

ϑ2

)

∧0

A =






D2
s + (κ2 − τ2)

2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2

−2τDs − τs

1

κ
D3

s −
κs

κ2
D2

s +
κ2 − τ2

κ
Ds +

κsτ
2 − 2κττs

κ2






B = (κ 0 )



Recursion operator:

R = A−
(
κs

τs

)

D−1B
(
κt

τt

)

= R
(
κs

τs

)

=⇒ vortex filament flow

=⇒ nonlinear Schrödinger equation (Hasimoto)


