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Part A: Question of Borel & Haefliger

1. Compact Hermitian symmetric spaces.

2. Schubert varieties.

3. The motivating question.



CHSS

X = G/P a compact Hermitian symmetric space (CHSS).

Example (Projective space)

CPn = Gr(1, n + 1)

Example (Grassmannians)

The space Gr(k ,m) of k–dimensional linear subspaces in Cm.

G = SL(m,C) ,

P = stabilizer of fixed k–plane ζ ⊂ Cm .



Irreducible CHSS

Classical

Grassmannian Gr(k, n + 1) = SLn+1/Pk .

Quadric hypersurfaces Qm = SOm+2/P1 ⊂ Pm+1.

Lagrangian grassmannians LG(n, 2n) = Spn/Pn.

Spinor varieties X n(n−1)/2 = SO2n/Pn.

Exceptional

Cayley plane X 16 = E6/P6.

Freudenthal variety X 27 = E7/P7.



CHSS as algebraic varieties

Definition
G a complex semisimple Lie group.

V an irreducible G–representation. That is, G ⊂ GL(V ).

Fact
There is a unique compact G–orbit X ⊂ PV .

Definition
P the stabilizer of a point o ∈ X .

Fact
X ' G/P is a (smooth) homogeneous variety.

Theorem (E. Cartan)

X admits structure of a CHSS if and only if the isotropy
representation of P on ToX is irreducible.



Schubert varieties

Theorem (B. Kostant 1963)

The classes σ = [S ] of the Schubert varieties S ⊂ X form an
additive basis of the integral homology H•(X ).

Example (Grassmannian)

Fix 0 < ` ≤ m − k and a subspace W ⊂ Cm of codimension
k + `− 1.

S(`) = {ζ ∈ Gr(k ,m) | dim(E ∩W ) 6= 0}

is a Schubert variety of codimension `.



Singular Schubert varieties

Example (Grassmannian)

Fix 0 < ` ≤ m − k and a subspace W ⊂ Cm of codimension
k + `− 1.

S(`) = {ζ ∈ Gr(k ,m) | dim(E ∩W ) 6= 0}

is a Schubert variety of codimension `.

Facts
1. If 1 < k < m − 1, then S(`) is singular.

Example

If k = 2, then Sing(S(`)) = Gr(2,W ) ⊂ Gr(2, n).

2. Most Schubert varieties are singular;
3. S is the ‘most singular’ variety representing [S ].



Motivating Question (Borel and Haefliger 1961)

Which Schubert classes σ can be represented by
a smooth variety Y ⊂ X?

Broader Context
Identification of distinguished representatives of (co)homology
classes. Examples include:

1. Hodge Decomposition Theorem: H•dR(M,R) ' H•(M, g).

2. Calibrated geometry  calibrated submanifolds Nk are global
minimizers of volume in [N] ∈ Hk(M,R).

3. Hodge Conjecture (Millennium Prize Problem).



Definition
When ∃ smooth Y representing σ = [S ], we say σ is smoothable.

Example

The hypersurface S(1) ⊂ Gr(k ,m) is a hyperplane section;
Bertini’s Theorem =⇒ σ(1) is smoothable.

Theorem (Hartshorne, Rees & Thomas 1974)

1. σ(2) ∈ H14(Gr(3, 6)) can not be represented by any integral
linear combination of smooth, oriented submanifolds of (real)
codimension four.

2. σ(2) = [Y1]− [Y2] ∈ H8(Gr(2, 5)), but cannot be smoothed.



Part B: What is known

1. Izzet Coskun

2. A differential geometric approach

2.a Maria Walters and Robert Bryant

2.b Jaehyun Hong



Work of Izzet Coskun 2010

Theorem
A (nearly sharp) description of the smoothable Schubert classes in
the Grassmannian.

Definition
A Schubert class [S ] is rigid if the only varieties Y representing
the class are the G–translates g · S .

Theorem
Identified all rigid Schubert classes in the Grassmannian.



A differential geometric approach

Theorem (Maria WaltersGr 1997 & Robert Bryant 2001)

The varieties Y with the property that

[Y ] = rσ , for some r ∈ Z , (1)

are characterized by the Schur differential system (to be defined).

Definition
The Schubert variety S is Schur rigid if every irreducible variety Y
satisfying (1) is a G–translate g · S .

Otherwise, S is Schur flexible.

S Schur rigid =⇒ σ rigid.
S singular and Schur rigid =⇒ σ not smoothable.

BH question can be studied via differential geometry.



Schur flexibility for trivial topological reasons

When H2k(X ) is generated by a single Schubert class σ = [S ],

H2k(X ) = Z ,

every Y k satisfies [Y ] = rσ. =⇒ S is Schur flexible.

Examples

The following are Schur flexible by topology:

1a. Every Schubert variety of Pn.

1b. Any S ( Pm ⊂ X .

2a. Every Schubert variety of Q2n−1.

2b. Any Schubert variety of Q2n, with dimS 6= n.

Remark
There are two Schubert varieties S ⊂ Q2n of dimension n; they are
maximal linear spaces Pn.



Work of Walters and Bryant

Maria Walters, Ph.D. Thesis 1997
Identified first-order obstructions to Schur flexibility for

(A) smooth Schubert varieties in Gr(k,m), and

(B) codimension two Schubert varieties in Gr(2,m).

Robert Bryant 2001

Identified first-order obstructions to Schur flexibility for

(1) smooth Schubert varieties in Gr(k ,m) and LG(n, 2n),

(2) maximal linear subspaces in the classical CHSS,

(3) singular Schubert varieties of low (co)dimension in Gr(k,m).



Work of Jaehyun Hong

Theorem (Hong 2007)

Let X be an irreducible CHSS, excluding the quadrics of odd
dimension. Let S ⊂ X be a smooth Schubert variety, excluding
the non-maximal linear subspaces, and P1 ⊂ LG(n, 2n). Then S is
Schur rigid.

Remark
Omissions above are for trivial topological reasons.

Theorem (Hong 2005)

Identified a large class of singular Schubert varieties in Gr(k,m)
for which there exist first-order obstructions to Schur flexibility.



Part C: Main Result – joint with Dennis The

1. Statement and examples.

2. Key tools in Hong’s approach.

3. Obstructions to extending Hong’s strategy to the general case.

4. Outline of our solution.



Theorem (Robles - The 2011)

A complete list of the Schubert varieties in a CHSS for which there
exist first-order obstructions to Schur flexibility.

Remark

1. List includes all (singular) S for which there exist first-order
obstructions to the existence of Y (BH’s question).

2. Theorem recovers the results of Walters, Bryant and Hong.

3. A Schubert class appears on this list if and only if its Poincaré
dual does.

4. Theorem need not be a complete list of Schur rigid Schubert
varieties: there may be higher-order obstructions.

5. The S(`) ⊂ Gr(k ,m) are not on the list.



Example: the Lagrangian Grassmannian X 15 = LG(5, 10)
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Example: the Spinor variety X 15 = D6/P6
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Example: the Cayley plane X 16 = E6/P6

�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�@

@

@
@
@
@
@
@
@
@

@
@
@
@
@
@
@
@

@
@
@
@

@
@
@
@

@
@
@
@
@
@
@
@
@@s

s s s

s s s s

s s s
s s s

s s s s s ss s s s s

s
s

Smooth (proper) Schubert variety.

g g g g g g g
g g g

Schur flexible by topology.

Q8

P5

g

g g

g

g

g

Schur rigid: ∃ first-order obstructions to flexibility.



Hong’s approach for smooth S

Two key tools

1. Well-known description of smooth S by connected
sub-diagrams of the Dynkin diagram of G .

2. A Lie algebra cohomology H1(σ) arises in analysis.

First-order obstruction to flexibility is equivalent to the
vanishing of a subspace of H1(σ).

Theorem of Kostant (1961) reduces computation of H1(σ) to
Weyl group combinatorics.

Obstructions to generalizing to singular case

1. No analogous description of the singular S .

2. Kostant’s Theorem does not apply to H1(σ).



The sine quibus non of our approach

1. Characterization of the Schubert varieties by an integer 0 ≤ a
and a marking J of the Dynkin diagram of G .

This generalizes the descriptions of both
• the smooth Schubert varieties (a = 0), and
• the Schubert varieties in Gr(k ,m) by partitions.

2. Construction of an algebraic Laplacian � (à la Kostant) with
the property that

ker� ' Lie algebra cohomology.



Characterization of Schubert varieties

Theorem
The Schubert varieties S are characterized by an integer 0 ≤ a(S)
and a marking J(S) of the Dynkin diagram of G .

Example (Sp8/P8 = LG(8, 16))s s s s s s s s<

Dynkin diagram of Sp8.

s
Marking for parabolic P8.

s ss
J = {2, 5, 6}.

J  E ∈ p

 E–eigenspace decomp.

ToX = n0 ⊕ n−1 ⊕ · · · ⊕ n−A

n0 ⊕ · · · ⊕ n−a = ToS , for some S .



Precise statements for the Lagrangian Grassmannian
LG(n, 2n)

Theorem (Characterization of Schubert varieties by (a, J))

∃ a bijection between Schubert varieties and pairs (a, J) satisfying

J = { jp < · · · < j1 } ⊂ {1 , . . . , n−1} and |J| = a, a+1 .

Theorem (First-order obstructions to Schur flexibility)

The S for which ∃ first-order obstructions to Schur flexibility are

1. |J| = a, any J with 1 < j` − j`−1 for all 1 ≤ ` ≤ p;

2. |J| = a + 1, any J with 1 < j` − j`−1 for all 2 ≤ ` ≤ p + 1.

For the singular S above (a > 0), [S ] is not smoothable.



Two differential systems on X = G/P

Fix σ = [S ], and s := dimS .

Gr(s,TX ) = Grassmann bundle of tangent s–planes ⊂ P(
∧sTX ).

Bσ = sub-bundle of s–planes tangent to g · S0 for some g ∈ G .

Bσ ⊂ Rσ := 〈Bσ〉 ∩ Gr(s,TX ).

Definition. Y ⊂ X is an integral variety of. . .

1. the Schubert system Bσ if TY 0 ⊂ Bσ.

2. the Schur system Rσ if TY 0 ⊂ Rσ.



Schur flexibility for representation theoretic reasons

Recall Bσ ⊂ Rσ := 〈Bσ〉 ∩ Gr(s,TX ).

Bσ := Bσ,o Rσ := Rσ,o .

Theorem (BryantGr 2001 & Hong 2007)

If Bσ ( Rσ, then S is Schur flexible.

Theorem (Robles - The 2011)

A complete list of the Schubert varieties in CHSS with Bσ = Rσ.



Example: the Lagrangian Grassmannian X 15 = LG(5, 10)
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Example: the Spinor variety X 15 = D6/P6
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Example: the Cayley plane X 16 = E6/P6
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Proofs: Role of Lie algebra cohomology I

∃ Lie algebra cohomology H1(σ) associated to σ.

Cohomology admits a P–induced graded decomposition

H1(σ) = H1
0 (σ) ⊕ H1

1 (σ) ⊕ H1
2 (σ) .

To identify the σ for which Bσ ( Rσ:

1. Bσ = Rσ ⇐⇒ TτBσ = TτRσ, for τ ∈ Bσ.

2. TτGr(s,ToX ) = H1
0 (σ) ⊕ Tτ (Bσ).

3. Compute H1
0 (σ) and apply representation theoretic argument.



Proofs: Role of moving frames

Assume Bσ = Rσ. The Schur system Rσ lifts

to a linear Pfaffian system (with independence

condition) on a frame bundle G ' G . X ⊂ PV

Rσ

G ⊂ GL(V )

?

?

Ingredients: s = stabG (S) , g = s ⊕ s⊥;

P induces s⊥ = s⊥−1 ⊕ s⊥0 ⊕ s⊥1 ;

ϑ ∈ Ω1(G, g) the MC form.

Linear Pfaffian System: ϑs⊥−1
= 0.

Independence Condition: det(ϑs) 6= 0.

S is Schur rigid if and only if every integral manifold
F ⊂ G admits a sub-bundle F0 on which ϑs⊥ = 0.



Proofs: Role of Lie algebra cohomology II

• Let F ⊂ G be a maximal integral manifold: ϑs⊥−1
= 0.

• S is Schur rigid if and only if ∃ F0 ⊂ F on which ϑs⊥ = 0.

• Cohomology: H1(σ) = H1
0 (σ) ⊕ H1

1 (σ) ⊕ H1
2 (σ).

1. Prolongation  ϑs⊥0
= λ(ϑs−1).

H1
1 (σ) = 0 =⇒ ∃ sub-bundle F1 ⊂ F on which ϑs⊥0

= 0.

2. Given F1, prolongation  ϑs⊥1
= µ(ϑs−1).

H1
2 (σ) = 0 =⇒ ∃ sub-bundle F0 ⊂ F1 on which ϑs⊥ = 0.



Proofs: Computing the Lie algebra cohomology

Step 1: Construction of an algebraic Laplacian � (à la Kostant)
with the property

ker� := H1(σ) ' H1(σ) .

Step 2: Compute H1
0(σ). (Used to determine when Bσ = Rσ.)

• representation theory, including (a, J) characterization;

• spectral sequence of filtered complex.

Step 3: Compute H1
+(σ). (Determines first-order obstructions to

flexibility.)

• representation theory, including (a, J) characterization;

• EDS machinery (torsion & prolongation).



Thank you.



What keeps me awake at night (Open Questions)

1. If X = Gr(k ,m), then a(S) is the number of irred.
components in Sing(S).
If X = LG(n, 2n), then d12a(S)e is the number of irred.
components in Sing(S).

What is the relationship between a(S) and Sing(S) in
general?

2. Can the (a, J) characterization be used to extend Coskun’s
results to arbitrary CHSS?

3. Do there exist higher-order obstructions to flexibility?

4. Characterize the Y satisfying [Y ] = r [S ].


